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ABSTRACT

Single-case interventions allow for the repeatedsurement of a case or participant
across multiple time points, to assess the tredatmefiect on one specific case or participant.
The basic interrupted time series design includesphases: baseline and treatment.
Raudenbush and Byrk (2002) demonstrated that a-ametigsis of large group designs can be
seen as a special case of multi-level analysis patticipants (level-one) nested within studies
(level-two). Raw data from a set of single casegiestudies have a similar structure. Van den
Noortgate and Onghena (2003) illustrated the usetaf-level model to analyze data in
primary single-case studies. In 2008, Van den Nyabet and Onghena later proposed that if raw
data from several single case designs are usethgtaanalysis, scores can be varied at each of
the three levels: over occasions (level-one), acpasticipants from the same study (level-two),
and across studies (level-three).

The multi-level approach allows for a large degve#exibility in modeling the data
(Goldstein & Yang, 2000; Hox & de Leeuw, 1997). Bashers can make various
methodological decisions when specifying the madepproximate the data. Those decisions
are critical since parameters can be biased i§thgstical model is not correctly specified. The
first of these decisions is how to model the lewad error structure--is it correlated or
uncorrelated? Recently, the investigation of the @an Noortgate and Onghena’s (2008) three-
level meta-analytic model has increased and shaamiging results (Owens & Ferron, 2011;
Ugille, Moeyaert, Beretvas, Ferron, & Van den Ngate, 2012 ). These studies have shown the

fixed effects tend to be unbiased and the vari@nogponents have been problematic across a
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range of conditions. Based on a thorough literatevéew, no one has looked at the model in
relation to the use of fit indices or log likelinbtests to select an appropriate level-one error
structure.

The purpose of the study was two-fold: 1) to datee the extent to which the various fit
indices can correctly identify the level-one coaage structure; and 2) to investigate the effect
of various forms of misspecification of the leveleoerror structure when using a three-level
meta-analytic single-case model. This study usedt®@arlo simulation methods to address the
aforementioned research questions. Multiple desigta, and analysis factors were manipulated
in this study. The study used a 2x2x2x2x2x5x7 faat@esign. Seven experimental variables
were manipulated in this study: 1) The number ahpry studies per meta-analysis (10 and 30);
2) The number of participants per primary studgiid 8); 3)The series length per participant
(10 and 20); 4)Variances of the error terms (nabshe variance at level-ones’F1; %, = 0.5,
0.05, 0.5, 0.05%, = 0.5, 0.05, 0.5, 0.05] and most of the variartdde@upper levelsof=1; %,
= 2,022,022, = 2,0.2,2,0.2]); 5) The levels for the fixeffiects (0, 2 [corresponding to
the shift in level]; and 0, 0.2[corresponding te #hift in slope]) 6)Various types of covariance
structures were used for data generation (ID, AR{(dYl ARMA (1,1); and 7) The form of model
specification [i.e. ID, AR(1), ARMA (1,1)], and enr structure selected by AIC, AICC, BIC, and
the LRT.

The results of this study found that the fixedeef$ tend to mostly be unbiased, however,
the variance components were extremely biasedpaitticular design factors. The study also
concluded that the use of fit indices to selectciieect level-1 structure was appropriate for
certain error structures. The accuracy of thenfliges tend to increase for the simpler level-one

error structures. There were multiple implicatiémisthe applied single-case researcher, for the
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meta-analyst, and for the methodologist. Futurearsh included investigating different
estimation methods, such as Bayesian approacimpmve the estimates of the variance

components and coupling multiple violations of émeor structures, such as non-normality at

levels two and three.
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CHAPTER ONE: INTRODUCTION

Single-Case Designs

Single-case interventions allow for the repeatedsuszment of a case or participant
across multiple time points, to assess the tredtmefiect on one specific case or participant.
The basic interrupted time series design includesghases: baseline and treatment. The
baseline (pretreatment) phase consists of a sar@sservations preceding the introduction of a
treatment. The baseline phase serves two printactibns: 1) to describe the existing level of
performance that is to be altered, and 2) to sasvihe basis for which predictions can be made
for the participant if the intervention had not beetroduced. The treatment phase consists of a
series of observations following the introductidradreatment. Inferences about the research
are usually made about the effects of the intereariily comparing different conditions
(baseline vs. treatment) presented to the samigiparit or many participants over time
(Kazdin, 2011). There are many commonly used siogée designs. The most commonly used
design is the multiple-baseline, which includesetiseries data from multiple participants (or
behaviors or settings) where an intervention igggaed to occur at different time points within
the various series (Ferron et al., 2009).

Repeated measures design is based on continuoceivatiens over time for the same
subject. This feature of single case researchaesobthe strengths of this design given that it can
allow a researcher to analyze a particular casejmh. However, this can also present
challenges in terms of choosing an appropriate alaéidysis method. The need to model serial

dependency, the amount of dependence is typichlyacterized by the correlation between
1
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adjacent time points, had been a great discussitreiliterature. Specifically, whether or not
single-case data can show serial dependence dmeatibsample sizes, or how to best estimate
the autoregressive parameters to ensure that teayndiased due to the smalNvas debated in
the single case literature (Matyas & Greenwood 61 8flitema & McKean, 1991).
Nevertheless, studies have shown that there i:thdeme correlation beyond random chance in
repeated measures design for observations witkingte subject (Kratochwill et al., 1974).
Barlow, Nock, and Hersen (2009) concluded that@urtelation may or may not exist given the
above debate, however, based upon past reseandyld appear reasonable for single-case
analysts to examine their data for the preseneaimfcorrelation. If autocorrelation is assumed
to be present in the population, then choosing thodkethat is appropriate for their data seems
ideal.

There are numerous options or tools when analyzimgle-case designs. Examples of
these analyses options include visual analysislazation tests, and multi-level modeling.
Additionally, there are a variety of effect sizélices that are used to supplement these analyses
options. These include non-parametric effect siggces, such as percentage of non-overlapping
data (Scruggs & Mastropieri, 1998), a changifAllison & Gorman, 1993; Beretvas &

Chung, 2008; Kromrey & Foster-Johnson, 1996), erube of standardized coefficients when
applying multi-level models (Van den Noortgate &dgbena, 2003, 2007, 2008). These effect
size measures are often used to characterizezé®fthe intervention effect. Researchers are
not only interested in the intervention effect with particular study, but may also want to know
about the intervention effect across studies.

Meta-analytic procedures allow researchers to giaginely synthesize past research

results, and provide evidence for best practicesi@ds & Olkin, 1985). However, there has
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been no consensus on the best way to synthesize dia¢a. Beretvas and Chung (2008)
conducted a narrative review of 25 single-case rartdyses and found that most of the SSED
(single-subject experimental designs) meta-analyste using non-parametric approaches. They
found that meta-analysts were using the simplektators as effect size measures, such as
change iR (Mooney, Ryan, Uhing, Reid, & Epstein, 2005; Swan& Sachse-Lee, 2000); and
non-parametric methods such as the percentagenebverlapping data (PND) (Templeton,

Neel, & Blood, 2008; Xin & Jitendra, 1999) and/betpercent of all non-overlapping data
(PAND) (Bellini, Peters, Benner, & Hopf, 2007; Qiwlg, Burns, & Lukito, 2011) for

conducting meta-analysis involving single-caseasde One major limitation is that these
approaches do not allow for inferences about #etitnent effects.

Raudenbush and Byrk (2002) demonstrated that a-ametigsis of large group designs
can be seen as a special case of multi-level asalyth participants (level-one) nested within
studies (level-two). Raw data from a set of sirggee design studies have a similar structure.
Van den Noortgate and Onghena (2003) illustratedutie of a two-level model to analyze data
in primary single-case studies. In 2008, Van denmgmte and Onghena later proposed that if
raw data from several single case designs areinsecheta-analysis, scores can be varied at
each of the three levels: over occasions (leve};@awoss participants from the same study
(level-two), and across studies (level-three). Egunal below describes the variation within
participants that occurs when treatment conditamescompared with a baseline condition (level-
one). At the second level, the variation overipgrants is shown using two regression
equations (Equations 2 and 3). Finally, the lasbtequations describes the variation across the

studies (Equations 4 and 5) that are includedemtleta-analysis.
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Equations 1-5 below denote the model used to repteke fixed effects and the variance
components at each of the three levels. The varialithse is a dichotomous variable
representing the baseline phase (phase = 0) aricktitenent phase (phase = 1). It should be
noted that errors on all three levels are typicaligumed to be normally distributed and have a
mean of 0. The model is presented below:

Level 1 Equation:
Yik = Bok + Pr*phase ey, e;jx~N(0,Z,) (1)

Level 2 Equations:

Ug ik
Bojk = Gook + Ugjk [u(l)j'k] ~N(0,Z,) (2)
Byjk = 1ok + Uik (3)
Level 3 Equations:
v
Book = [1ooo + Voo [v(l)gl;] ~N(0,%,) (4)
010 = L1100 + Viok (5)

The multi-level approach allows for a large degve#exibility in modeling the data
(Goldstein & Yang, 2000; Hox & de Leeuw, 1997). Bashers can make various
methodological decisions when specifying the maod@pproximate the data. Those decisions
are critical since parameters can be biased iftdtgstical model is not correctly specified. The
first of these decisions is how to model the lewaé error structure--is it correlated or
uncorrelated? The errors in the first-level of thedel represent the discrepancy between the
values of the outcome observed and of the indivgdggowth trajectory (Ferron, Dailey, & Yi,
2002).

There are several options when dealing with thelteme error structure. These options

range from assuming that the error structure i®uetateds?| to choosing an appropriate
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correlated error structure. A method of handling lgvel-one error structure is to ignore the
correlated error structure, subsequently makingriect assumptions, such as the assumption of
independence (Littell, Pendergast, & Natarajan 0208 researcher has to decide if the level-
one error structure (Kesselman, Algina, Kowalch&kVolfinger, 1999) should be correlated or
uncorrelated. If the error structure is correlatbdn which structure is best? Is it a first-order
autoregressive or a moving average autoregressdel The most commonly used level-one
error structure i& = o1, which is used when a researcher has decided thattbrs are
uncorrelated. For correlated level-one error stmgtthe most commonly used option is the first-
order autoregressive, AR (1) (Ferron, Dailey, & 3002). The use of fit indices to determine the
correct level-one error structure has not been eéx@anin the single case literature. Furthermore,
the consequences of various forms of misspecifinadf the level-one error structure have also
not been investigated in terms of the meta-anabfsssngle-case data. Therefore, the study
utilized research related to the broader repeatssares or longitudinal literature to design the
conditions that were used.
Autocorrelation and Longitudinal Designs

Whether or not to model autocorrelation had bekage discussion and studied
extensively in growth curve modeling (GC modeling)ongitudinal data analysis (Kesselman,
Littell, & Sivo, 2003). Growth curve modeling (arrigitudinal) data’s defining characteristic is
that individuals are measured repeatedly over @nmabling direct study of change (Diggle,
Heagerty, Liang, & Zeger, 2002). A question thanhawonly arises with both single case and
longitudinal designs is whether or not the model the correct level-one error structure
specification, and if so, what is the correct estucture? Many researchers who use

uncorrelated error structures commonly assumeittas®| (Bryk & Raudenbush, 2002).This
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commonly used approach should lead the researmlygrestion or to ask whether or 2bhas
been misspecified (Kesselman et al 1999; Kwok, We@sten, 2007). Simply assuming that the
level-one errors are uncorrelated has shown totteatlated Type | errors and biased
confidence interval coverage in single case deqigeson, Bell, Hess, Rendina-Gibioff, &
Hibbard, 2009) and in longitudinal data analy&w/@k et al., 2007) if in fact, autocorrelation is
present in the population.

Conversely, once researchers have decided to madetelated level-one error
structure, there are two commonly used approachssléct an appropriate level-one covariance
structure when using multi-level models. Some neteas may choose to specify their model
using a simple correlated error structure a pfiwok, West, & Green, 2007; Murphy &

Pituch, 2009). Another method is to rely on fiticeb or log likelihood tests to identify the
correct covariance structure (Ferron et al., 26@&4selman et al., 1999). The study investigated
both of these methods and their application tolstegse data.

Problem Statement

Single-case research has traditionally been lefobmeta-analytic studies, due to the
lack of agreement on the best way to meta-analyzgescase data (Faith, Allison, Gorman,
1996; Van den Noortgate & Onghena, 2008). Metayaimbf single case designs would not
only allow for the understanding of generalizapjlir the treatment effect across studies, but it
also affords researchers the benefit of undersigritbw the treatment’s effect relates to
specific individuals within a particular study. Meanalyses generally have three goals. 1)
Meta-analytic studies strive to provide a pointreate of the average effect size, in short, a
guantitative summary. 2) Meta-analyses strive tivigle confidence intervals in which the

“true” population effect size is likely to be fountihe confidence interval can then aid in the
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decision as to whether the effect size is signifilyadifferent from zero. 3) Meta-analytic
techniques can help the researcher search fol@sicor moderators, that could help explain the
differences or variability among effect sizes. Tikishe case in which there is a substantial
variability among the effect sizes.

Recently, the investigation of the Van den Nookgatd Onghena’s (2008) three-level
meta-analytic model has increased and shown progiisisults (Owens & Ferron, 2011; Ugille,
Moeyaert, Beretvas, Ferron, & Van den Noortgat@]22). These studies have shown the fixed
effects tend to be unbiased and the variance coemsmave been problematic across a range of
conditions. Based on a thorough literature reviespne to date has looked at the model in
relation to the use of fit indices or log likelinbtests to select an appropriate level-one error
structure. Furthermore, no one has looked at theempences of general misspecification of the
level-one error structure when meta-analyzing sirngise raw data using the three-level model.
Therefore, it is necessary to investigate whethemtork that was conducted in the broader
repeated measures designs can be applied to siseathgrles designs such as single case
research.

Study’s Purpose

There have been a multitude of articles analyznigdices and properly identifying the
correct covariance structures in terms of the beoézhgitudinal area, or growth curve models.
A thorough literature search has produced no studielate looking at fit indices in terms of
single case research using multi-level models. heg there has been no research on the
consequences of different forms of specificatiotheflevel-one error structure when using a

three-level meta-analytic single-case model.
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The purpose of the study was two-fold: 1) to deteenthe extent to which the various fit
indices can correctly identify the level-one coaage structure; and 2) to investigate the effect
of various forms of misspecification of the leveleoerror structure when using a three-level
meta-analytic single-case model. The research ipnsstf interest are as follows:

Research Questions

1. To what extent do fit indices (AIC, adjusted AIAB log likelihood ratio test) correctly
identify level-one covariance structure when usrtgree-level meta-analytic single-case
model?

2. To what extent are tHexed effect parameter estimates from a three-level meta-dnalyt
single-case model biased as a function of desigpoife (number of primary studies per
meta-analysis, number of participants per priméug\g series length per primary study),
data factors ( variances of the error terms, cavae structures, level of the treatment
effect), and analysis factors (form of specificaji®

3. To what extent areonfidence interval width and coverage for the fixé effectsfrom a
three-level meta-analytic single-case model affetea function of design factors
(number of primary studies per meta-analysis, nurobparticipants per primary study,
series length per primary study), data factorsigvees of the error terms, covariance
structures, level of the treatment effect), andyammafactors (form of specification)?

4. To what extent are thBype | error and power for the test of the fixed efectsfrom a
three-level meta-analytic single-case model affitetea function of design factors
(number of primary studies per meta-analysis, nurobparticipants per primary study,
series length per primary study), data factorsigvees of the error terms, covariance

structures, level of the treatment effect), andyamafactors (form of specification)?
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5. To what extent are theariance componentparameter estimates from a three-level meta-
analytic single-case model biased as a functiaresign factors (number of primary
studies per meta-analysis, number of participaatgppmary study, series length per
primary study), data factors (variances of thereeoms, and covariance structures, level
of the treatment effect), and analysis factorsnffof specification)?

6. To what extent areonfidence interval width and coverage for the vaance
componentsfrom a three-level meta-analytic single-case maffelcted as a function of
design factors (number of primary studies per nagi@lysis, number of participants per
primary study, series length per primary studyjadactors (variances of the error terms,
covariance structures, level of the treatment &ffend analysis factors (form of
specification)?

Overview of the Study

This study used Monte Carlo simulation methodsidress the aforementioned research

guestions. Multiple design, data, and analysiofgctvere manipulated in this study. The study used
a 2x2x2x2x2x5x7 factorial design. The conditions larefly introduced here, but were explained
with great detail later in Chapter Three. Severeexpental variables were manipulated in this
study. 1) The number of primary studies per metyais (10 and 30); 2) The number of
participants per primary study (4 and 8); 3)Thaesdength per participant (10 and 20);
4)Variances of the error terms (most of the vagaaiclevel-one:d*=1;%, = 0.5, 0.05, 0.5, 0.0},
= 0.5, 0.05, 0.5, 0.05] and most of the variangbeatpper levelsof=1;%, = 2, 0.2, 2, 0.2%, =
2,0.2, 2,0.2]); 5) The levels for the fixed et (0, 2 [corresponding to the shift in level]dah
0.2[corresponding to the shift in slope]) 6)Varidyges of covariance structures were used for data

generation (ID, AR(1), and ARMA (1,1); and 7) Theerh of model specification [i.e. ID, AR(1),
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ARMA (1,1)], and error structure selected by AIQCAE, BIC, and the LRT. For each of the 160
data and design conditions, 5000 simulated dasavgste generated using SAS IML (SAS Institute,
Inc., 2008). These data sets were then specified tise a priori model selection of the level-one
error structure and the use of fit criteria or gost model selection of the level-one error struectu
This study examined the fixed effects, (i.e., therall average baseline level, the overall average
treatment effect, the overall average baselinesslapd the overall average difference between
baseline and treatment slope) and the variance aoemps (e.g., the between-person within-study
variance in the average baseline level, the betyeeson within-study variance in the average
treatment effect, the between-person within-stualyance in the average baseline slope, the
between-person within-study variance in the avetifference between baseline and treatment
slope, the between-study variance in the averagelina level, the between-study variance in the
overall average treatment effect, the between-stadance in the overall average baseline slope,
and the between-study variance in the averagerelifte between the baseline and the treatment
slopes) in a three level multi-level model.
Significance of Study
This study contributed to the ongoing debate obemtrelation and single-case designs.
Moreover, this study provided another method, grosfunity, to include single-case designs in
meta-analyses. For methodologists, this study earedo demonstrate the importance of
selecting the correct level-one error structurel, laow the error structure can impact the
parameter estimates and inferences made from dstiseates. For the applied researcher and
practitioner, this study can serve to illustratevhi indices can be used to select the correct
level-one error structure. Additionally, this stuthn serve to demonstrate the difference

between selecting the error structure a priorisangi fit indices, and the impact of the correct
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level-one error structure on the parameter estsnaldéained from the model. This study serves
also in terms of the some design features thabe#er allow for the meta-analysis of single-
case designs. Some of these issues include sarmplersall three levels and baseline stability.

The conditions in this study serve to not only iegik and extend previous research in
the methodological area. The conditions were atgxsen to represent current applied works in
this area. Specifically, the conditions that weseduin this study were drawn from a
combination of methodological works and appliedaretalysis that were done using multi-
level models.

Several aspects of this study distinguish it fraevpus works that have investigated the
three-level model to meta-analyze single-case @ata.primary aspect is the appropriate use of
fit indices to determine the correct model speatimn when dealing with small samples, i.e.
single case designs. Additionally, the consequeatassspecifications of the level-one error
structure were examined when meta-analyzing sicege research.

Limitations

The data in this study were simulated based onfspdesign conditions. Those
conditions were chosen based on a review of sicge-literature, meta-analyses of single-case
data, and applied work that was done using thetleeel model to aggregate data across
studies. The specific conditions chosen for thislgtare only a portion of the possible options
that could have been included in this study. Theeeefthe results of this study can only be
generalized to studies with similar conditions. Avonclusions beyond the observed conditions

should be interpreted with caution.
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Table 1

Design Factors and Level for each Factor

Error Variances

Most Variance at Level-1:

[¢°=1;%, = .5, 0.05, .5, 0.05%,,

Most variance at the upper levels:

[6°=1;%, = 2,0.2,2,0.2%, = 2,

=.5, 0.05, .5, 0.05] 0.2,2,0.2]
Data Generation
c = c = c = c =1ID c = c =
ID AR(1) ARMA AR(1) ARMA
(1.1) (1.1)
Model Specification
c=ID o =ID c =1D oc =1ID c =1D c =1D
c = c = o =AR(1) c = c = o =AR(1)
AR(1) AR(1) c = AR(1) AR(1) c =
c = c = ARMA c = c = ARMA
ARMA ARMA (1,2) ARMA  ARMA (1,2)
11 (11 (1,1) (1,1)
Number of Number of Number of Level
Participants Participants Observations for
per Meta- the
Analysis Fixed
Effect
10 10 0
2
20 0
2
10 0
2
20 0
2
30 10 0
12
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Table 1 (Continued)

Design Factors and Level for each Factor
Number of Number of Level for
Participants Observations the Fixed

Effect
2
20 0
2
8 10 0
2
20 0
2

13
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Definition of Terms

Autocorrelation. The extent to which the values of the observdthbier at time t (Y) are
correlated with values at t — i, or ¥)((Matyas & Greenwood, 1996).

Bias The difference between a known parameter andjp@&cted parameter estimate| B(
Confidence interval coverag@&he proportion of 95% confidence intervals thattain the
estimated parameter. This outcome was aggregatesisa@plications within each condition to
represent the average confidence interval coverage.

Confidence interval widthrhe difference between the upper and lower limitthe 95%
confidence intervals for the estimated parameteis dutcome was aggregated across
replications within each condition to representdkierage confidence interval width.

Effect size A measure of the magnitude of the relationshigvben two variables.

Fit Indices Akaike Information Criterion (AIC, closer to zgré\djusted Akaike Information
Criterion (AICC, closer to zero), Bayesian InforimatCriterion (BIC, closer to zero), and Log
likelihood ratio test (LRT, statistically signifinohata = .05). These indices will determine the
best model to approximate the data.

Fixed effectsParameter estimates of the coefficients repredantthe multi-level model [e.g.
overall baseline level, overall average treatméfece(shift in level), overall baseline slope, and
overall treatment effect for the slopes (differencslopes)]

Hierarchical Linear Modeling (HLM)This term is commonly referred to as multi-level
modeling. Multi-level modeling can include two lésel) a level-one submodel that describes

an individual’'s change over time; and 2) a leveb-twodel that describes how these changes
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vary across individuals. Together, these two lewéksquations represent a multi-level statistical
model (Raudenbush & Bryk, 2002). This techniquesisful when dealing with nested data.
Kenward-Roger Degrees of freedom methidds method was developed as an extension of the
Satterthwaite method to approximate the degreégeflom; it adjusts for small sample sizes
and works well with complex variance structures{é®, Bell, Hess, & Hibbard, 2009).
Mean-Square ErrarA measure of the average squares of error.

Meta-analysis The quantitative synthesis of study results ilmablves combining study
outcomes across studies to evaluate and summasearch findings.

Non overlap of all pairs (NAP)his new index summarizes data overlap between e&ite

data points in Phase A and each of the data poimtisase B.

Over-specificationThis is a form of misspecification, but expligithvolves the model that
specifies a more complex level-one error structinaa the level-one error structure of the data
(e.g. a model that specifies= AR(1), when the true level -1 error structare ID).

Percentage Exceeding the Median (PEB@scribes the percentage of phase B (intervention)
data points exceeding the median of the A phasse(ioe).

Percentage of All Non-Overlapping Da@AND). This is defined as “percent of all data
remaining after removing the minimum number of dadants which would eliminate all data
overlap between phases A and B.

Percentage of Non-Overlapping Data (PNDhe percentage of phase B (treatment) data points
which exceed the single highest phase A (baseliatm point (or below if the lowest point of
data points in the baseline phase if the undesiralbiicome or behavior is expected to decrease)
(Scruggs & Mastropieri, 1998).

Primary StudiesThe original studies that comprise the sampléHermeta-analysis.
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Randomization desigiiRefers to the presentation of alternative intetieas in random order,
usually with the restriction that the conditions @gresented an equal number of times (Kazdin,
2011).

Satterthwaite degrees of freedom methddhethod to approximate the degrees of freedah th
was developed to be used with unbalanced desighsanplex error structures.

Series lengthThe level-one sample size for the participantsimgle-case research. This is also
referred to as the number of observations or measemts.

Single-case researcfihe repeated measurement of a case or particgamss multiple time
points, to assess the treatment’s effect on onafgpease or participant.

Treatment effeciThe change in the outcome variable as a resporisang in the intervention
phase. This can refer to thikange in levebr thechange in slopes

Under-specification.This is a form of misspecification, but explicitlyis involves the model
that specifies a simpler level-one error structben the level-one error structure of the data [e.g
a model that specifies= ID when the true level-one error structure is AR(1) |.

Variance component3he parameters that estimate the variation wipleirson, between persons

within studies, and between studies.
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CHAPTER TWO: LITERATURE REVIEW

This literature review was divided into four paifegst, a brief overview of single-case
designs was provided. Secondly, the analysis tgdesifor primary single case studies were
described. Third, the various methods for synthegigingle case data across studies,
particularly using multi-level modeling were dissad. Lastly, the examination of the selection
of the level-one error structure: either through tise of fit criteria, selecting level-one error
structure a priori, or conducting a sensitivity lgses.

Single-Case Designs

In large group studies, focus is generally placedhe average amount of change across
groups from pre-treatment (or pre-interventionpost-treatment. Focusing on this type of
change can cause one to miss the opportunity teratathd how, why, and when such a change
has occurred (Barlow, Nock, & Hersen 2009). Sirggiee interventions allow for the repeated
measurement of a case or participant across naultiiple points, or in other words, to assess the
treatment’s effect on one specific case or pawritipThe most fundamental design element of
single-case research is the reliance of repeatsehaditions or measurements of performance
over time for each participant. The basic interedptime series design includes two phases: the
baseline and treatment phases. The baseline (@ire&at) phase consists of a series of
observations preceding the introduction of a trestimThe baseline phase serves two primary
functions: 1) to describe the existing level offpenance that is to be altered; and 2) to serve as

the basis for which predictions can be made foiptrgicipant if the intervention had not been
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introduced. The treatment phase also consistsefias of observations following the
introduction of a treatment. Inferences about #search are usually made about the effects of
the intervention by comparing the different coralis (baseline vs. treatment) presented to the
same participant or many participants over timezga, 2011).

Design Characteristics

There are many designs that can be used in stagkeresearch. These designs influence
or attempt to reduce the internal validity thrahtst can be present in this type of research.
These designs include, but are not limited toos&c AB design, the repeated ABAB design,
the alternating treatment design, and the mulbjgleeline designs (Barlow et al., 2009; Kazdin,
2011). Kazdin (2011) used the ABAB design to iliatt the key elements present in many of
the commonly used single-case designs. The simBlBAdesign examines the effect of an
intervention by alternating the baseline conditmhijch is referred to as the A phase, and the
treatment condition, also known as the B phase.AThad B phases are then repeated again.
Ideally, one would observe that the behavior inseea(given that is what the researcher
hypothesized) when the participant(s) were in thghBse and then returns back to its original
baseline levels once the intervention has beerdvatikin or removed. Finally, the performance
again increases in the last treatment, or B phésedin, 2011). This commonly used design
attempts to control for various threats to intewradidity. More specifically, looking at the
intervention and then withdrawing the interventamd adding the intervention again reduces the
likelihood that an external event could have caukedbserved changes. The design only leaves
one plausible explanation--the intervention caukedbserved change. Figure 1 shows an
example of an ABAB design where the author’s puepwas to examine the relationship

between social stories and undesirable behaviore Mpecifically, the researcher sought to
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investigate if social stories could reduce undéseréehaviors in audent with autism. Th
figure displays the first and third phases as tmebne phases, followed by the second
fourth phases (intervention phases). During therugntion, both social stories were read for
student to remind him of appropriatecial behaviors (Figure 1 adapted from Lorime

Simpson, 2002). The ABAB design characteristicssarelar aross many single case desi

Baseline Treatment Baseline Treatment

M|

0 T T T T T T T T T T T T T T T T T T T T T AN T T /1% 1

1 2 3 4 5 6 7 8 91011163v1531415161718192021222324

~J
1

Frequengy of underiable behavigr

Figure 1 An example of an ABAB graph for an undesirable b&draThis figure illustrates th
ABAB design with the use of social stories to regltlte undesirable behavi

Another complex design involves one phahange, from A phase to B phase, aci
multiple participants or settings. This single cdssign, called the multig-baseline, include
time-series data from multiple participants (or behasjior settings) where an interventior
staggered to occur different time points within the various time sarigerror Bell, Hess, &

Hibbard, 2009)This allows for several cases or settings to béyaad simultaneously within
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study. Additionally, Kazdin (2011) describes mukybaseline designs explaining that the
effects are demonstrated by introducing the intetiea to different baselines, whether that is
behaviors or persons. If each baseline changegharekpected outcome occur, each time the
intervention occurs then we can feel more comfdetabth attributing the effect to the
intervention, rather than to extraneous factorsltijgle-baseline designs do not share the
practical or ethical issues with some of the ottessigns, such as the ABAB design. The
intervention does not need to be withdrawn oncerttezvention is introduced to a particular
baseline.

The power of these designs is illustrating thatetigected change occurs only when the
treatment or intervention is directed at the betvawetting, or subject (Barlow et al., 2009).
Figure 2 (adapted from Ferron et al., 2009) belbygtrates a graph of a multiple baseline
design. The multiple-baseline design is the mostroonly used design in the single case
research. Shadish and Sullivan (2011) locatedtizigi, and coded 809 single case designs from
113 studies in 2008 in 21 different journals inagiety of fields including psychology and
education. They found that the majority of singés& designs included some form of multiple
baseline design, either alone or in combinatiom&iother design. Moreover, approximately
79% of the single case studies included some fdrmuitiple baseline design.

Analysis Alternatives

There are several methods for analyzing single-dat®e The next few sections will
review a portion of the commonly used methodslieranalysis of single-case research.

Visual Inspection or Analysis.Kazdin (2011) refers to visual inspection as reagla
judgment about the reliability or consistency deimvention effects by visually examining the

data. The author goes on to describe the experaheniierion as a comparison of performance
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during the intervention with what the performancauld look like if the intervention had not
been implemented. Visual analysis has been theapyianalysis for single case data (Busk and

Marascuilo, 1988; Fisch, 2001; Kazdin, 2011).

Figure 2. Multiple-Baseline Design adapted fromr&ey Bell, Hess, & Hibbard, 2009

e
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time

Figure 2.Visual graphs 3 participants in a multiple-basebtedy. Notice that the 3
participants have different lengths in terms ofdbags and treatments.

In a survey and review of single case literatungsiBand Marascuilo (1988) found that
visual analysis was still the dominant form of gsé&l used in single case research designs, and

furthermore Kazdin (2011) recently describes visngpection as the primary method of data
21

www.manaraa.com



evaluation in single-case research. Proponentsoélanalysis argue that visual analysis have
low Type-I error rates (Brossart Parker, Olson, &hiddevan, 2006; Gorman & Allison, 1996).
There has been a reluctance to the sole use ahasalysis because the lack of inter-rater
reliability or the high incidence of judges’ ertbiat has been seen in several studies. Past
research had found that reliabilities tend to lve i@ moderate (Brossart et al., 2006). Brossart et
al. (2006) conducted a study to test the interrnatigability among 15 experienced judges in
determining the extent of the intervention eff@dtey found that their inter-rater reliability was
very poor, unless the intervention effect was sanisl, which could be easily identified by the
visual analyst. Furthermore, low reliabilities dmndh response bias has been noticed
increasingly when the intervention effect involtesnds (Fisch, 2001). The author conducted a
review of a multitude of studies that investigateztial analysts’ capabilities of determining a
treatment effect in the presence of complex dateh) s when treatment effect involved both
shift in level and shift in trends, in the presentautocorrelated errors. Fisch (2001) concluded
that the most striking feature across all of thel&ts that were reviewed is the participants’
inability to detect trends when they were presémeor in combination with a shift in level
treatment effect. This finding supported the loterrrater reliability found in past literature.
This low inter-rater reliability, more specificallyhen the data are complex, such as in the
presence of autocorrelated errors, have been tiee @d many disputes among researchers who
have argued that visual analysis is not enougleteat intervention effect (Brossart et al., 2006;
Huitema, 1986; Kazdin, 2011).

Knowing that serial dependence may be presennhgiescase data, visual analysis alone
may not be sufficient. Visual analysis and inspectiannot account for the underlying trend or

pattern that may exist within the data due to aat@tation (Huitema, 1997; Kazdin, 2011,
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Matyas & Greenwood, 1990). Likewise, visual anaysannot discern whether an intervention is
effective above and beyond some underlying patteahwould exist in the presence of
autocorrelation. In the aforementioned study, Maigrad Greenwood (1990), the aim was to
examine the false alarms and miss rates in singdagds, such as AB panels, using visual
analysis. Serial dependence in the time seriesalsassystematically varied to determine its
effect on rater reliability. A sample of 37 gradeigtudents were asked to make judgments (void
of intervention effect, a level change, a trendngfea combined level and trend change, or other
type of systematic change during intervention) @rcRarts. Variations in false alarms had a
significant interaction effect with degree of sedapendence. Conversely, this was not the case
with miss rates. Most of the miss rates were bel6%. This study contributed to the idea that
the conservatism by visual analysts may be com@ednin the presence of serial dependent
data. In a much earlier study, Jones, Weinrott,\4aaght (1978) asked 11 experienced judges to
visually analyze 24 graphs from a reputable jourfbe majority (83%) of the graphs had
statistically significant <.05) lag-1 autocorrelation that ranged from @®8. The judges had
to determine if a “meaningful” shift in level hadaurred. Meaningful solely referring to the
reliability of change. The authors found the agreet of visual judges with times series
analysis would be lowered when serial dependenistegixin the data and when statistically
significant results were found by the times seaieslysis. This is shown to be problematic given
the fact that autocorrelation or serial dependéndigely to exist in single-case designs and one
would hope that the shift in level or treatmeneetffis statistically significant.

Visual judges may have trouble identifying intertren effects other than shifts in level
or changes in linear trend. These issues seemmgsxnprominent when short series lengths are

introduced, as is common with single case desillady@as & Greenwood, 1996). The difficulty
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in determining whether or not there is a treatnedfect using visual analysis continues to be an
important concern in the literature, and this congs magnified in the presence of correlated
errors.

Matyas and Greenwood (1990) explicated that vianalysis tends to become too liberal
when positive autocorrelation is present, thereloyagasing our Type | errors. Negative
autocorrelation tends to produce more conservaauges for visual judgment. Finally, the
current verdict is that serial dependence or autetation may exist and should be taken into
account when evaluating single-case data (Kaz@hlR Given this conclusion, and the issues
that correlated errors may pose to the visual ahalyseems reasonable, or almost necessary to
supplement visual analysis with some statisticginejue (Barlow et al., 2009; Kazdin, 2011).

Overlap Statistics.Another type of analysis that complements the Vianalysis is non-
regression type indices or effect sizes, sometnekesred to as overlap statistics. This analysis
category contains a few options. The percentagmiofoverlapping data (PND) effect size
measure can be explained as the percentage of BHasatment) data points which exceed the
single highest phase A (baseline) data point (tovibéhe lowest point of data points in the
baseline phase if the undesirable outcome or behavexpected to decrease). One conceptual
advantage is in its meaningfulness to practicaaeshers; for example, PND scores of over 90
(i.e. 90% of treatment observations exceed thedsighbaseline observation) (Scruggs &
Mastropieri, 1998).

The Percentage of All Non-Overlapping Data ( PANEjlefined as the percent of all
data remaining after removing the minimum numbedaif points which would eliminate all
data overlap between phases A and B. There aread@¥ker non-parametric effect sizes used in

the single case literature. PAND has similar fezguo PND, however, avoiding some of the
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major criticisms. First, PAND uses all of the datam both the baseline and the treatment
phases. More importantly, PAND can be translate@flect an actual effect size, such as
Pearson’s Phor Phi (Parker, Hagan-Burke, Vannest, 2007). The percergageeding the
median (PEM), describes the percentage of phasadd\ention) data points exceeding the
median of the A (baseline) phase. The null hypashaisthis approach is if the treatment has no
effect, then the points will fluctuate around thieldbe line. Namely, the points have a 50%
chance of being above or below the median of tegipus baseline phase (Ma, 2006). The
author proposed the PEM as an approach to compeimsatome of the shortcomings of PND;
one such example is in the presence of ceilindgpor data points in the baseline.

Recently, Parker and Vanest (2009) introduced gHaueasure: non overlap of all pairs
(NAP). This new index summarizes data overlap betweach of the data points in Phases A
and B. A non-overlapping pair will have a treatm@ntB phase) data point that is higher than its
corresponding baseline (or A phase) data pointy Hesigned this new index to remedy the
perceived weaknesses of the other indices. Thes&smings include a) lack of knowledge
regarding the underlying distribution, which theakes it difficult to calculate a confidence
interval around the effect size (PND); b) a wesalktionship between other known effect sizes
(PEM); c) low ability to discriminate among publeshstudies (PEM, PND); d) low power for
single case designs, which typically have shoiesdength (PND, PAND, PEM); and e) the
other indices rely highly on visual analysis, whaan lead to human error in hand calculations
from the graphs (PND, PAND, PEM) (Parker & Van@8i09). The authors found that the NAP
was loosely comparable with the previously mentibefect sizes. The authors concluded that
PAND was the strongest index, with the greatestipi@n and power. Howbeit, none of the

indices could discriminate for a large number ohpkes, particularly among the more successful
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interventions (Parker & Vanest, 2009). Another camrmhortcoming among these indices is
that the overlap statistics does not handle intgige effects that involve trends.

Randomization Tests.In recent years, there has been increased attentibe use of
statistical methods that do not rely on the tradil parametric assumptions (Barlow et al.,
2009). One of the greatest advantages to randtionz&sts is that no assumptions need to be
made about the data. For example, it is a disiohtftee test statistic. Distribution-free testatth
rely solely on the information from the sample hgaeed increased interest in recent decades
(Barlow et al., 2009). The randomization desigmergto the presentation of alternative
interventions in random order, usually with thetriegon that the conditions are presented an
equal number of times (Kazdin, 2011). Due to theloem assignment of the intervention on any
particular day, the results are amenable for ségtatistical tests (Edgington, 1996).

In single-case designs, a true experiment candimguished from a quasi-experiment
by the use of random assignment of treatment tesurement occasions (Onghena & Edginton,
2005). There are two types of randomization schealgnation randomization and phase
randomization. The latter is commonly used in baral and educational interventions. The
implementation of the phase randomization occursnitthe intervention is optimally introduced
over the course of several measurement occasi@usrow in a predetermined order, or when
the order of the introduction of the interventigrpredetermined, i.e. baseline phase comes
before intervention phase (Onghena & Edginton, 2005

The logic behind these tests is simple: the nydldtiyesis is if the intervention has no
impact on the observed dependent variable, theadtual observations are not influenced by the
intervention, therefore the observed scores simgdlgct naturally occurring scores. The data are

then analyzed by looking at all possible permutegj@r combinations, that could have occurred.
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All of the possible outcomes make up the randonaradistribution (Barlow et al., 2009). When
the order in which the treatments are appliednsloan, then the design meets the criteria of a
randomization design (Kazdin, 2011). Baseline comas count as a possible treatment phase.
Then one can see how randomization can be exténdedude the multiple-baseline design.
Kratochwill and Levin (2010) conducted a study inigh the primary purpose was to provide
scientifically credible extensions of various typésingle case designs that incorporated
randomization. The authors concluded that incofpggaome type of randomization in even the
most basic type of single case design, such a&Bngesign could increase the internal validity
of the study and allow investigators to draw maakdvinferences.

The discussion of randomization tests and powarsignificant one in the literature.
Ferron and Onghena (1996) estimated the powemabraization tests used with single-case
designs involving random assignment of treatmemfghases. The authors simulated 120
conditions crossing 6 effect sizes (0, 0.2, 0.8, 0.1, and 1.4); 4 levels of autocorrelation (O,
0.3, 0.6, -0.3); and 5 phase lengths (4, 5, 6nd,8. The authors found that estimating power
depended not only on the type of design, but there an interaction effect between type of
design and autocorrelation. Positive autocorrefdia to greater power in the random
assignment afreatments to phasetesign; while negative autocorrelation had theosfip
effect. Based on this study, researchers shoultbexways of increasing the power of
randomization tests used in conjunction with treaitio phase designs.

Although randomization tests have shown to be iefiitg there are limitations. The first
of those limitations is related to the statistigalver. For the phase design, the power is
approximately 10% less than that of an ordinagst-{Ferron & Onghena, 1996). Phase

randomization designs gain increasing power witngasing phase changes; however, the
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researcher needs to determine how many observatiensecessary for each of the phases.
Another limitation is there may be instances wtitaeenumber of observations, outcome
measurements, and materials may need to be indreaseder to get the correct number of
desired comparisons between the AB phases (Kraibdwevin, 2010). Randomized designs
may also limit the kinds of statistical analysiattare applied to the data. Non-parametric
methods are applicable; nonetheless, these tegtsea sufficient number of observations or
phases to have adequate power to detect an intemwesffect (Ferron & Onghena, 1996;
Kratochwill & Levin, 2010). Randomization tests dafl us that, yes, there is an effect.
However, in order to explore the size or precisibthat effect, parametric methods are
necessary.

Classical Statistical Modeling Singer and Willett (2003) described a statistmalel as
mathematical representations of population behaVioe authors go on and explain that the
models describe salient features of the hypothdgrecess of interest among individuals in the
target population. In order to describe these maee and make statements about the
populations, statistical models are expressed ysmngmeters, such as intercepts, slopes, and
variance components. Gentile, Roden, and KleinZ)1 it suggested the use of statistical
models, such as t-test or an ANOVA based methodhfmieling the treatment effect for single
case designs. However, even with the simplest desigiind, the AB design, the assumptions
of analysis of variance and regression analysi$ilkely to be violated. The first assumption is
normal distributions and equal variances of scwiésin each level of the independent variable.
This may be violated given the treatment effect mlégr not only the means, but the
distributions of the dependent variable, such as/driance, skewness, and kurtosis (Gorman &

Allison, 1996).
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Regression based approaches have also been sugaest@ossible option to compare
the intervention between the baseline and thenrest phases (Huitema & McKean, 1998).
Equation 6 represents an outcorifg that is modeled on time poinfor each participanfipis
the expected score (baseline) for each particifdre.expected treatment effect (the difference
in means for the baseline and treatment phaseff)dgrarticipant is represented by Phaseis
a dichotomous variable that is coded O for baselm® 1 for treatment phase. The within phase
error is modeled bg (Gze represents the variance @J.

Yi=Po + B*phase + ¢ (6)

Equation 6 is the most basic model and can bedugktended to include terms to
evaluate trends in both the baseline and the teatphases (Center, Skiba, & Casey, 1985-
1986; Huitema & McKean, 2000). This is modeled lg tollowing equation:

Regression equation including trends for both psiase
Yi =Po + B1*phase- Bo*time . B3* phase*time + ¢ (7)

Again, this model is an extension of the model &ovith the difference being now this
model controls for time and the interaction of timi¢h the treatment effect. The first two
coefficients or fixed effects of the model have iaminterpretation as above, but now
controlling for time. In other words, th (phase effect) now represents the level shift at a
particular point in time. The phase effect can tiyezary depending on which time point is
chosen. Moreovef is the difference between two predicted values (onéhe baseline
regression and one for the phase regression) loasall data both before and after intervention.
Specifically, theB, is the value offeamenforedicted at the first point in treatment minus the
Yhaselinddt the same time point, i.e. first time point ieatment; this difference is an estimate of

the level change associated with an interventiantéa & McKean, 2000). Additionall,.
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now represents the baseline’s slope, or the trendglthe baseline phase; and similafly,
represents the difference in trend (or slope) betwbe baseline and the treatment phases at a
particular point in time.

Although both the ANOVA and regression type appheschave been suggested as
analysis options, the greatest concern is the timolaf the assumption of independent residual
errors. In single case designs, there would béylilkcehave some carry over from one time point
to the next. For example, students may remembaearegas from previous sessions; may feel ill
or sick one day that could affect the next sevaagh; or drug interventions may take some time
to “wash out”. These are examples of what we waaltiserially dependent data, or
autocorrelation which was explained earlier ing¢hapter. Specifically, statisticians would say
that these behaviors, and thus the residuals fnenstatistical models, are correlated due to
successive scores are more similar to each otaantiould be predicted by chance (Gorman &
Allison, 1996). Ostrom (1990) showed that as aut@tation of residuals increases, computed t-
tests for regression weights values may be biddeceover, he showed that with modest
autocorrelation (> .4) that the observed value wdnd more than twice the true t-value. When
there is positive autocorrelation, the standardrertend to be smaller, thus leading to more Type
| errors or false rejections. On the other handgnwhutocorrelation is negative, then the standard
errors tend to be larger, thus this will lead taler F-values and t-values, causing increasing
Type Il errors or misses (Kazdin, 2011; Matyas &&rwood, 1990). Another concern with the
use of the traditional t- or F-tests is regardimemds. These parameters are calculated based on
means and variances alone, they are strongly diaged when trends are present in the data

(Barlow et al., 2009).
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To combat some of the issues related to correkatenls, a generalized least squares
(GLS) method was proposed. This method would aftmvwhe flexibility of the regression type
approaches, while also controlling for the serggehdency among the data. Maggin et al.,
(2011) described three general criteria that eexgts must have: 1) effect sizes must be
consistent with the logic of visual analysis; 2nitist control for threats to interpretation, sush a
autocorrelation and within-phase trends; and la8jlyhe effect size must have certain statistical
properties, i.e. readily interpretable by researcifrom a variety of fields. The authors posit that
an ideal effect size would provide the flexibildfregression type methods while also modeling
autocorrelation.

GLS allows researchers to model autocorrelatiomgusome basic assumptions that are
similar to the assumptions used in other statistinalyses. Effects sizes are derived using a
four-step process which includes a model to corfitnoautocorrelation, regression lines
estimated for both phases for comparison, GLS ssgya used to calculate an effect size taking
into account the slope and intercept parametergdast phases, and finally, the overall effect
size utilized in hypothesis testing (Maggin et 2011). The author’s second purpose was to
demonstrate through applied examples that the @h&ibned according to the aforesaid
criteria of an ideal effect size measure. Spedlficthe authors applied the GLS approach to two
published studies that represented strong vistettsfthat also displayed significant
autocorrelation. They found that the GLS effece il indeed support the visual analyses and
the GLS regression method did control for threatsterpretation, such as the presence of
autocorrelation. They also found several limitagiom the GLS methods. The authors suggested
that more work needed to be done in finding thetrappropriate method for estimating the

autocorrelation parameter. The authors further logied that their findings led to an opportunity
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to find appropriate bootstrapping methods thatlmadded to the GLS method. Additionally,
the set of limitations also included the large antaf data, which may not be feasible in single
case designs, which are necessary to ensure thatitbcorrelation is estimated accurately.
Researchers need to be aware of each of theindudivdata patterns (increasing trend in
baseline, immediate level shift, and a decreasenyltas the intervention continues), for there
are instances where the parameter estimates ceutigbcurate.

The research presented thus far in this chapteitlbhsisated that autocorrelation can
affect the decision made regarding the intervengibect when using both visual and statistical
analyses. The key issue still remains regardingecomodel identification for the purpose of
forecasting and comparing (Matyas and Greenwod@6)19There are statistical analyses, such
as multi-level modeling, that are robust to thdation of independent errors, similar to the GLS
method. Additionally, the development of hierarehiinear models or multi-level modeling has
created a powerful set of techniques for reseandndividual change and change across
participants, similar to those needed for singkeadesigns (Raudenbush & Bryk, 2002).

Multi-level Modeling. The basic regression model is designed for crostsesal data,
however, in terms of single-case research, or tedeaeasures data, a model that embodies two
types of research questions is necessary. Thislraddeesses theithin-personchange and the
between-persodifferences in change (Singer & Willet, 2003, B).4More specifically, this
suggests that a model for change must include éweld: 1) a level-one sub-model that
describes individuals change over time; and 2yalievo model that describes how these
changes vary across individuals. Together, thesddwels of equations represent a multi-level
statistical model (Raudenbush & Bryk, 2002) forlgmiag primary single case studies. This

model can further be thought of as an extensidh@tquations presented earlier. This extension
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now allows the researcher to synthesize acrosgipants within a particular study. This model
is represented and explicated:
Level 1 Equation:

Yij = Boj + By* phasg+ By*time; + B3* phasg*time;’ + e;; (8)

Level 2 Equations:

Boj = Boo + Ugj 9
qu

Bij= 010 + Uy L~z (10)
uzj L
U.3j

Boj = O20 + Uy; (11)

B3j = B0 + U3 (12)

The score on the dependent variable on measuresneasion for subject is Yj. The
phasevariable is a dummy-coded indicator reflecting thiee the observation is in the baseline
phase hasg = 0) or the intervention phasgh@sg = 1). The coefficient for theme; variable
represents the slope during the baseline pliasg, and the coefficient for the interaction term,
phasg*time’, reflects the difference between the baseline areviantion phases’ slopes. The
timevariable can be centered in a variety of ways twinmay be helpful for interpreting the
model parameters (Baek, Moeyaert, Petit-Bois, BasgtVan den Noortgate, & Ferron, 2013).

Specifically, for this study, thigme variable is uncentered for the baseline phasejses|
such that for the first measurement occasion irbseline phas¢éimeg;= 0. However, théime;”
variable in the interaction terrphasg*time’; is coded such thaime'; = 0 for the first
observation in the intervention phase. Therefdre expected score during the baseline phase if
extended one observation into treatment is equ&j;tand the expected score of the treatment
phase at this same point in timeighigher. As a resulf};; refers to the immediate level change

associated with the intervention (Huitema & McKe2000).3, represents the linear trend
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during the baseline phase, and the linear trenth®treatment phase wgghigher. In other
words, B3 indicates the effect of the intervention on thedrer the shift in slopes. Bofl; and

Bz are needed to fully describe the treatment effébie error in the level-one modej;Y can be
assumed to be normally distributed with some cewvexe) . However, a variety of alternative
structures foly. can be assumed, including an independent strugttineand a first-order
autoregressive structure [AR(1)].The level-one éigua Equation 8) is similar to Equation 7
which was previously described, with the exceptltat now the model is allowed to vary across
participants.

It should also be noted that the dependent varialtles study is assumed to be
continuous. The use of continuous variables inlsiagse studies is common in terms of
mathematics achievement (Billingsley, Scheuerm&niwebber, 2009) or words read per
minute (Tam, Heward, & Heng, 2006). There are waitypes of outcomes that are commonly
used in single case studies, such as binary, drdinaount outcomes, for example, counting the
number of times that a student talks out withoigimg their hands or the number of times that a
student leaves their seat. These examples wouldreedjfferent types of assumptions using a
Poisson distribution (Shadish & Rindskopf, 2007adhkh et al., 2008).

Many researchers have suggested the use of mudlifieodeling to analyze single case
data, particularly when correlated errors are presethe data (Ferron, Bell, Hess, & Hibbard,
2009, Raudenbush & Bryk, 2002). The use of meltel modeling allows for flexibility in
handling nesting of observations within a participdeterogeneous variances, and moderating
effects (Ferron et al., 2009; Shadish & Rindsk@pf)7; Van den Noortgate & Onghena, 2003).
Multi-level modeling (MLM) estimates of the indiwid! effects are Empirical Bayes (EB)

estimates, which depend not only on the data fleemirtdividual, but also on the data from other
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participants. EB estimates are obtained by creaimgverage of an estimate that is based on
information solely from that individual and an esdite that is based on the average of all of the
participants’ data (Raudenbush & Bryk, 2002). Femimore, the authors, Raudenbush & Bryk
(2002) pointed out that raw data from a set oflsilmgse design studies had a similar structure as
the two-level meta-analysis for group designs: ole®ns nested within individuals (level one)
and across participants within a study (level two).

Van den Noortgate and Onghena (2003) also illiesdrtte use of a two-level model to
analyze data in the individual studies in singlgecdesigns. Simulation research has shown
promising results in terms of utilizing two-levebntels to analyze single case data (Ferron, Bell,
Hess, Rendina-Gibioff, & Hibbard, 2009). Kwok, We&steen (2005) described many additional
benefits to using MLM in the broader context ofeafed measures designs. One of the benefits
that they cite is the ability to look at moderatarsl cross-level effects. For example, a
researcher may be interested in looking at whetttkvidual characteristics such as age and
gender can influence someone’s growth or reacti@antintervention. The second advantage,
which is more relevant to the present study, is @ covariance matrices of both the between
subject random effects and the within subject raméorors can be flexibly and simultaneously
modeled. This notion of modeling different covadga matrices can be extended to analyzing
primary single-case designs and then extendedeiutththe meta-analysis of single case
designs.

The need to model autocorrelation has risen irsiiigle case literature and many
researchers have conducted Monte Carlo studiegssldg the issue of correlated errors when
using single case designs (Ferron et al., 2009pReFarmer, & Owens, 2010). The study

conducted by Ferron et al. (2009) examined thevateestimate of the average treatment effect
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for two methods of specifying level-one error stane @1 or first-order autoregressive). These
authors found that under the Kenward-Roger metthedaverage coverage estimate for the 95%
confidence interval was the highest, .942, wheo@rtelation was modeled versus not
modeled. They also found that when autocorrelatiasa modeled, using Kenward-Roger
method for estimating degrees of freedom, provaegtage coverage for the treatment effect
that was close to the nominal level of .95.

A general conclusion based on the aforementionetlest is that the fixed effects are
unbiased when using multi-level modeling with snsalinple sizes as long as the error structure
and the degrees of freedom are correctly spedifedon, Farmer, & Owens, 2010). This
conclusion was further investigated with a focuglmnindividual treatment effects and their
confidence intervals when using one of three metlafestimating degrees of freedom: the
Kenward-Roger, the Satterthwaite, or the Contairtmeethods. Ferron, Farmer, and Owens
(2010) concluded that traditional statistical mehaot accounting for the nested data structure,
would tend to undercover with positive autocorielatand the Kenward-Roger method would
be expected to perform the best when there wasalea error structure. Furthermore, the
authors summarized their article suggesting thegarchers conducting multiple-baseline studies
with multi-level modeling should use the Kenwardg@omethod for estimating degrees of
freedom (Ferron, Farmer, & Owens, 2010). Reseascrer not only interested in analyzing
single case designs across participants within@ysbut there is also an increasing interest in
analyzing data across single-case studies.

The Autocorrelation Debate

The repeated measures design is based on continbeasrations over time for the same

subject. This feature of single case researchdefiaite strength to this design given that it can
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allow a researcher to analyze a particular casejmh. However, this can also present
challenges in terms of choosing an appropriate alaadysis method. A variable whose future is
predictable to some degree from its own valuesan fthe passage of time possesses some form
of statistical serial dependence. One way to des@utocorrelation is the extent to which the
values of the observed behavior at time) @fe correlated with valuestat i, or Y () (Matyas

& Greenwood, 1996). This generally results in thgachaving characteristics different than
taking an observation one or two times, such ashetween subjects design. This difference has
implications on what assumptions (i.e. the asswnptf independence) can be applied to the
data and what statistical techniques can be useaghfdysis. The amount of dependence is
typically characterized by the correlation betwadjacent time points. This is referred to as
autocorrelation, or serial dependency.

Whether or not single-case data can show seriarakgce due to small sample sizes or
how to best estimate the autoregressive paranteterssure that they are unbiased due to the
smalln has been debated in the single case literaturgeida & McKean, 1991). However,
studies have shown that there is indeed some atioelbeyond random chance in the repeated
measures design for observations within a singbgesti (Kratochwill et al., 1974). The study’s
purpose was to demonstrate that the statisticapi@ddence assumption is entirely unwarranted
in an N=1 (or small sample) design. The authorssueal the correlation between time points
within individuals compared to the correlation beém heads or tails when flipping a coin. They
found that the correlation was substantially highetiveen time points within the subject. This
study supports the idea that what a person da@seat is not independent of what he or she had
done at time t-1, t-2, t-3, etc. Many studies badtinued to analyze the presence of

autocorrelation in single case research (Busk &addewillo, 1988; Huitema & McKean, 1991;
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Matyas & Greenwood, 1991). In another study, B&dMarascuillo (1988) concluded that 40%
of the baselines and 59% of the intervention phhadsautocorrelation coefficients greater than
.25. Huitema and McKean (1991) also confirmed tiag@propriate choice for use in
standardization used in Huitema (1985)’s origimguanent. However, the most important flaw
with the original argument was that the conclusioray have been biased by the inclusion of
many studies with very short time series (humbeslsfervations < 10), which may greatly
underestimate the extent of autocorrelation (Maayas Greenwood ,1991). Matyas and
Greenwood (1991) also concluded that althoughabel lautocorrelation may not be as large as
originally hypothesized; it was clear that the gahBypothesis of no autocorrelation cannot be
sustained. Matyas and Greenwood (1996) conductedew of the autocorrelation debate,
synthesizing the different viewpoints regardingogotrelation and single case designs. Based on
their review, they concluded that neither visual statistical analyses could assume a simple
“flat straight line plus random residual” model. Meof the aforementioned studies showed
support for modeling the autocorrelation, or takuogrelated errors into account when analyzing
single case designs. Although there does seemagreement that yes, autocorrelation can exist
among single-case data, there is still no agreeorettie appropriate analysis technique to
handle correlated errors in single-case data.

Recently, there has been an emergence of reseaatihglwith autocorrelation in single
case designs dealing with primary studies (Fertai. £2009; Ferron et al., 2010; Owens, 2011)
and investigating intervention effects across &sidsuch as a meta-analysis (Baek & Ferron,
2013; Petit-Bois, Baek, & Ferron, 2013). These istwidll have one thing in common: they all
found that modeling autocorrelation tended to gnage precise treatment effects versus not

modeling the autocorrelation when autocorrelati@s wmdeed present in the population. Given
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this conclusion, which analysis technique shouldised to model autocorrelation when dealing
with single-case data assuming that autocorrelatoms exist?
Meta-Analysis and Singe-Case Designs

Treatment effectiveness, not only within studiesdmross studies as well, specifically
which factors concerning the interventions areatife, has become a topic of great interest in
terms of single case research (Beretvas & Chur@g;20wens, 2011; Van den Noortgate &
Onghena, 2008). One method for addressing thesmnoas with treatment effectiveness across
studies has been addressed through quantitativkesys, or meta-analysis, of the research
interventions to find which factors have been dffecin math intervention research. Glass
(1976) introduced the term meta-analysis as “tladyars of the results of statistical analyses for
the purposes of drawing general conclusions” (pMgta-analyses generally have three goals. 1)
Meta-analytic studies strive to provide a pointraate of the average effect size, in order words,
a quantitative summary. 2) Meta-analyses striyertwide confidence intervals in which the
“true” population effect size is likely to be fountihe confidence interval can then aid in the
decision as to whether the effect size is signifilyadifferent from zero. 3) Meta-analytic
techniques can help the researcher search folesicor moderators, that could help explain the
differences or variability among effect sizes, tisagiven that there is a large amount or
substantial variability among the effect sizes.

Single-case research has traditionally been léfobmeta-analytic studies, due to the
lack of agreement on the best method to meta-amaiymle case data (Faith, Allison, Gorman,
1996; Van den Noortgate & Onghena, 2008). Metayaimbf single case designs would not
only allow for the understanding of generalizapjlir the treatment effect across studies, but it

also affords researchers the benefit of understgrabw the treatment’s effect relates to specific
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individuals within a particular study. Faith, Atn, Gorman (1996) offered additional reasons
why it is essential to meta-analyze single casa.ddte authors posited that many interventions,
particularly behavioral interventions have only heesearched or studied in the single case
context. Therefore, meta-analysis in single casearh has to be done in order to know how
effective these behavioral interventions have ls®ass studies. Faith, Allison, Gorman (1996)
further concluded that single-case research oétavds the reader wondering whether the results
of a particular study could be applied to anotheniidual outside of that context or study.
Meta-analytic studies could then produce an aveeffget, with a confidence interval, which
would then inform the reader what an expected effiege would be in other studies.

Analysis Methods

There are several methods used for conducting areth/ses in single-case research.
There are several meta-analyses that have beenrdaténg single-case research designs;
however, to date, there has not been a consenghg dest way to synthesize these data.

Summary Statistics Beretvas and Chung (2008) conducted a narratiview of 25
single-case meta-analyses and found that moseditiyle case or single participant meta-
analysts were using non-parametric approachesy flinher concluded that meta-analysts were
using the simplest indicators as effect size messw@and non-parametric methods such as
percentage of non-overlapping data (PND)( Scrugdda&tropieri, 1998) and percent of all non-
overlapping data (PAND) (Parker et al., 2007) fonaducting meta-analysis involving single-
case. Maggin et al. (2011) suggested that resetarshould use both visual and statistical
analysis when synthesizing across single-caserasea

Regression-based Method$kegression-type approaches are also commonly ased t

conduct meta-analyses because they offer sophediead flexible methods by fitting statistical
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models to the observed data (Faith, Allison, Gormi&96). Gorsuch (1983) concluded that
trend analysis was the most important analysienms$ of minimizing your Type | and Type Il
errors. The major advantage to his method wastthaideled intervention effect over time. In
other words, his method allowed meta-analystsd& ki the intervention effect above and
beyond the passing of time. The major shortcomiag that his method did not model change in
slopes, only change in levels. However, there @exventions where the researcher does not
only expect there to be a change in level, but fasthere to be a change in slope or trend.
Several researchers have then proposed statistaxdels that would allow the researcher to
determine treatment effectiveness when a trencesgnt in the data (Allison & Gorman, 1993;
Kromrey & Foster-Johnson, 1996).

These effect sizes are much more complex. Thisedargely in part by the fact that
trend must be taken into account before analyaitgyvention effectiveness (Kromery & Foster-
Johnson, 1996). The authors explicate a methoddimputing effect sizes, for either shift in
levels or change in slopes, using a regressiordbaggeroach when trend is present in the data.
Kromery and Foster-Johnson (1996) demonstratedtibagffect size can be calculated using the
change of Rfor the two models--the second model taking irdcoaint the trend while the initial
model does not take trend into account. In additmothese well-known approaches, some
researchers have turned to the use of multi-lewaeting as an additional statistical tool for
synthesizing single case data across studies (Qw&6mh4; Ugille et al., 2012; Van den
Noortgate & Onghena, 2008).

Multi-level Modeling. In addition to the single-variable effect size cators and the
previously mentioned regression type indicators Wexe being used to meta-analyze single-

case designs, Van den Noortgate and Onghena (p0@&)sed that if raw data from several
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single case designs are used in a meta-analysigsscan be varied at each of the three levels:
over occasions (level-one), across participants fitte same study (level-two), and across
studies included in the meta-analysis (level-thrdejuation 13 below describes the variation
within participants that occurs when treatment ¢omas are compared with a baseline condition
(Level 1) allowing trends for both the baseline &reétment phases. At the second level, the
variation over participants is shown using fourresgion equations (Equations 14-17). Finally,
the last set of equations describes the variattoosa the studies (Equations 18-21) that are
included in this meta-analysis.

Equations 13-21 below represent the three-levelahasked to represent the fixed effects
and the variance components at each of the thveésleThe variable phase is a dichotomous

variable representing the baseline phase (pi=®eand the treatment phase (phasd.).

Level 1 Equation:

Yik = Bok + Bu* phasge+ Po* timey + Pa* phasgtime’jx + e,  e;%x~N(0,X.)(13)

Level 2 Equations:

Bojk = Book + Uojk (14)
Upjk (15)
Bujk = Orok + Ugik Uy jik 15
wpy| “N(0.2)
Bajk = G20k + Ugik , Us i (16)
Bajk = B30k + Uz (17)
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Level 3 Equations:

Aoo = [ 1ooo + Vook (18)
Vook

O10¢ = 1100 + Viok V1ok (19)
V20k ~N(0, %)

G20 = [l200 + Vook V3ok (20

O30¢ = [ 1300 + Vak (21)

Combined Model:
Yik = Looo + [og*phase +Hxog'time + [Igog*phase*timeé+ Vo + Vi + Vook + Vaok + Uook +
Uiok + U2ok + Usok T jk

(22)

In Equation 13, the value of the dependent variahleneasurement occasiofor
subjectj of studyk (Yij) is regressed on a dummy variable phase, thaleqgoe if measurement
occasion occurs in the treatment phase, otherwise it igkeuO in the baseline phase. The
score on the dependent variable on measuremergioncdor subjecy of studyk is Yjx. The
phasevariable is a dummy-coded indicator reflecting thiee the observation is in the baseline
phase fjhasgc = 0) or the intervention phasghiasgx = 1). The coefficient for theme variable
represents the slope during the baseline phiasey ,and the coefficient for the interaction term,
phasgc*time’i, reflects the difference between the baseline aredhviention phases’ slopes. The
timevariable can be centered in a variety of ways Wwimay be helpful for interpreting the
model parameters (Baek et al., 2013; Van den Nateig Ferron, 2013).

Specifically, for this study, thiéme variable is uncentered for the baseline phasejses|
such that for the first measurement occasion irbtseline phaséimey = 0. However, théme’
variable in the interaction terrphasegc*time’;x is coded such thaime’ = 0 for the first
observation in the intervention phase. Therefdre expected score during the baseline phase if

extended one observation into treatment is equ&jito and the expected score of the treatment
43

www.manaraa.com



phase at this same point in timeig higher. As a resulf};j refers to the immediate level
change associated with an intervention (Huitema @&®han, 2000)p, represents the linear
trend during the baseline phase, and the lineadtier the treatment phase wg higher. In
other wordspsj indicates the effect of the intervention on th@dréhat is the difference between
the baseline phase and treatment phase slopespfadimd s are needed to fully describe the
treatment effect. At the second level, Equatiohd.1 describe the new regression equations for
the variation over subjects. Equation 14 describasthe baseline performance for subject j
from study k equals an overall baseline for stughyus some random deviation. Similarly,
Equations 15-17 indicate the variation of the trestt effect, linear trend in baseline, and the
effect of the intervention on linear trend, respesty, over subjects from the same study. The
next set of equations can be thought of similaslytee second level equations.

At the third level, the variation across subjestsiodeled using Equations 18-21.
Equation 18 represents the baseline mean for $tagythe overall baseline across all of the
studies plus some random deviation. The same delad by Equations 19-21 for the variation
of the treatment effect, linear trend in baselarg] the effect of the intervention on linear trend,
respectively, across studies. It should be ndtatidrrors on levels 2 and 3 are typically
assumed to be normally distributed and have a rae@rand a variance of 1.0. There was no
covariance in the errors between levels and betwea®ens at level-two and level-three. The
within-person error is modeled ley (czerepresent the variance @f). Equation 22 simply
represents the combined model once all coefficibat® been algebraically substituted.

There are lingering concerns on the use of muillenodeling, which is based on large
sample theory, and its appropriateness to single data. One may expect that interval

estimates of the average treatment effects woulthbeased under smaller sample sizes;
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however, the same is not expected of the variaoggonents (Raudenbush & Bryk, 2002).
Owens (2011) conducted a Monte Carlo study to emartie appropriateness of the three-level
model to meta-analyze raw data from single cas#iegu The author found that the fixed effects
estimated in a three-level model tended to bebiiand reasonably unbiased with small sample
size and when using the Kenward-Roger estimatioddgrees of freedom. In short, the author
found that the 95% confidence intervals width fog fixed effects approached .95 as level-three
sample size increased. This indicated that, wiam@ossible, meta-analysts should increase the
number of primary studies included in their metalgsis. The simulation study also found that
variance components tended to be less stable arelbiased. Specifically, Owens (2011)
found the level-three variance components tendée tonderestimated, while the level-two
variance components tended to be overestimatedthdfmore, as the variance in error terms
shifted from most of the variance being in levebtie most of the variance being in level-three,
the variance components for level-three tendectorgerestimated and more biased.
Conversely, as the variance in error terms shiftath most of the variance being at level-one to
most of the variance at level-two, the variance gonents for level-two tended to be
overestimated and more biased. Owens (2011) alswlfthat the within person residual
variance became more biased when using the thveéredel as autocorrelation increased. The
author proposed that this finding was not a sugpgsven the stronger the relationship between
errors within the person, the greater the diffigutt obtaining unbiased estimates for the residual
variance.

Ugille et al. (2012) conducted an extensive simoastudy which investigated the
performance of the multi-level approach for staddaad (the unstandardized regression

coefficients divided by the residual within-phasanslard deviation) and unstandardized effect
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sizes for single case studies. The authors sintdilagous conditions for the three-level model.
They found that the multi-level approach workedlwegien unstandardized effect sizes were
used. The approach was also optimal for standatdifect sizes for certain conditions: when
there were more than thirty studies, when thereewsainy level-one units, i.e. observations for
each participant and when the studies are rathaogeneous, and when there was a small
amount of between-study variance.

Furthermore, applied work has been done examimiegftree-level model to meta-
analyze single case data. Petit-Bois, Baek, antbR€R2012) investigated the model by
analyzing the degree to which parameter estimagesemsitive to various methodological
decisions, specifically regarding the specificatidrihe growth trajectories using raw data
collected from primary studies. Three distinct medevolving different specifications of
growth trajectories (no growth within a phase, ¢anslinear growth, or nonlinear growth) was
analyzed to understand the impact of this methajicéd decision on the parameter estimates.
The study found that the model did support thealiamalysis graphs in selecting the best model
(the model that specified linear growth in termsrathematics achievement over time). The
authors suggested future work could be done tojaedhe appropriateness of the fit indices
given the small samples associated with single ezssarch (Petit-Bois, Baek, and Ferron,
2012). In another study conducted by Baek, Petis;Band Ferron (2012), the three-level model
was evaluated looking at the consequences of stmacture specification on the results of a
meta-analysis of single-case data involving reaflumency. More specifically, the authors
analyzed four different models: the first modelgsed no autocorrelation; the second model the
autocorrelation is assumed to be constant bothmathd across studies; the third model the

autocorrelation is assumed to be the same acrossipants within a study, but allowed to vary
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across studies; and the last model allowed forimgrgutocorrelation across participants which
leads autocorrelation to vary both within and asmstsidies. The results indicated that the last
two models did not converge; therefore, the remngimesults are based on just the first two
models. The fixed effects for the two models did statistically differ. However, the fit indices
supported the more complex level-one error strectBaek, Petit-Bois, & Ferron, 2012). These
applied works did use the fit indices as one waigémtify the best model to approximate the
data, however, the appropriateness of the us¢ ioidices have not been empirically studied in
terms of single case research.

Based on the research done thus far investigatargdén Noortgate’s 2008 three-level
meta-analytic model, this study sought find therappateness of the use of fit indices to select
the correct level-one error structure when syn#iegiraw data across single-case studies.
Furthermore, this study looked at the consequeoicessspecifying the level-one error structure
when using the three-level model to meta-analyaglsicase data. This work has not yet been
done in single-case research, or using small sasms, therefore literature from the broader
repeated measures or longitudinal designs wastadedher inform the conditions for this
study.

Level-one Error Specification

There are several ways that autocorrelation candxeled, however, this study focused
on a few which are discussed in the following secti

Error Structure Options

The simplest approach to modeling the level-onerestructure is to assume the errors
are independent, =o?1 (Raudenbush & Bryk, 2002). Another simple altémeawould be to

specify an unstructured covariance matrix. Thetgappeal for an unstructured error covariance
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is that it places no restrictions on the structfrE. An unstructured covariance structure is
commonly used in longitudinal data analysis, whbege are generally a large number of
participants and a substantial number of obsematu@r participant. In most analyses, a more
parsimonious structure is desirable. For examplaniexploratory analysis, it is sensible to
begin with the unstructured error covariance mae@ehuse it has the smallest deviance. This is
due to the large number of parameters that areregijto be estimated. The large value for the
AIC and BIC over the model that assumed indepenei@ats demonstrates the “wasting” of
considerable degrees of freedom in choosing anmuatated form o (Singer & Willet, 2003).
However, convergence issues may arise with thelthe unstructured matrix in single case
research where there are typically a small numbpaudicipants with a large number of
observations for each participant.

There are several other types of error matriced ursthe repeated measures literature.
One type of level-one error structure would bede a first order autoregressive model, AR (1).
Conceptually, the lag 1 autocorrelation represtr@siegree to which the current observation, at
time t, can be predicted by the observation befatréme t-1. This can be calculated by taking
the correlation between the second and first olasiervand so on, throughout the series. By
doing this a researcher can determine the relassdrfehe current observation with the past
observations. Many researchers are drawn to itstedider autoregressive model because its
“banded diagonal” shape seems appropriate or tiedls growth processes. When errors are
characterized by AR(1), the elements in the maagainal ofX have equal variances
(homoscedastic, with varianeé). Additionally, the pairs of errors have identicalvariances in
bands parallel to the leading diagonal. The conaga are the product of théand an

autocorrelation coefficienp, whose value is always less than or equal to &. tDuhe fact that
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the errors are always fractional, then the erroilanges decline as you move away from the
leading diagonal (Singer & Willet, 2003).

There are also more complicated models, such dgsherder autoregressive moving
average model, ARMA (1,1)This alternative has some characteristics of theragressive
structure, in that it has bands of identical cauaces aligned parallel to the main diagonal. The
ARMA (1,1) allows more flexibility than the AR(1}rsicture (Singer & Willet, 2003,). In
summary, the list of parameters for each modelbeadescribed a® contains a single
parameterd?) on the main diagonal of an identity matrix, wreer@R(1) contains two
parametersof and the autocorrelation coefficient, ripd, and ARMA (1,1) contains not only the
same two parameters as in AR@andp, it also has a moving average coefficient, gamyha (
These structures are considered nested becaustrocteire can easily be another structure by
constraining one or more parameters. More spetiificdR (1) can be reduced to ID gfis
constrained to be equal to 0. Moreover, ARMA (Lan be constrained to ID if bograndp are
set to equal 0 (Kwok, West, & Green, 2007). Thidlistrated by the three level-one error
matrices in Figure 3 below. This example is justsionple illustration in Figure 3 below of the

conceptual relationship between these nested @naaistructures.

¥ =o°l ¥ = AR(1) ¥ = ARMA(1)
c“ 0 0 0] g1 P p p 1y oy oy
0 6° 0 0 P 1 p p? 0
0 0 >0 p> P 1 p Y 1 Y Ip
0 0 0 o PP PP p 1 oo 1
vp vy 1

Figure 3 Three level-one error structures. This figuresttates the 3 different error
specifications for the level-one error structuretthermore, it illustrates the correlation across
four time points.
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Another way to illustrate these structures is loklng at the underlying models which
are often presented in the time series literaflmbachnick & Fidell (2008) describes
autoregressive components as the memory of thegsqueceding observations. The value of
phi (p) is O when there is no relationship between adijacbservations. Furthermore, they

described the relationship using the following neatlatical model in Equation 23:

Yt=pY i1t @ (23)

The moving average components represent the mewohding process for preceding
random errors (Tabachnick & Fidell, 2008). The authwent on to describe the mixed model
which contained both an autoregressive and mowegage components so both types are
required for this model. This mixed model is représd below in Equation 24 whegrés the

autoregressive component andllustrates the moving average component:

Yi=pYr—lei1t+tea (24)

Obtaining the correct within-subject covarianceictinre has been a huge discussion and
studied extensively in growth curve modeling (GCdelong) or longitudinal data analysis
(Kesselman, Littell, & Sivo, 2000). Growth curve dsting or longitudinal data’s defining
characteristic is that individuals are measure@atgaly over time enabling direct study of
change (Diggle, Heagerty, Liang, & Zeger, 2002)o8t one use a correlated error structure?
Many researchers who use uncorrelated error stegttommonly assume that fie °|
(Bryk & Raudenbush, 2002). This commonly used apggincshould lead the researcher to
guestion whetheX has been misspecified (Kesselman, Algina, KowddcBuwolfinger, 1999;
Kwok, West, Green, 2007). Given this question @nedresearch which has demonstrated that
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autocorrelation more than likely exists within aeated measures framework, choosing to
model the autocorrelation appears most appropriateer deciding to model autocorrelation, a
guestion that commonly arises with both areas (adrat is longitudinal or single case designs)
is whether or not the model has the correct lewel-@rror structure specification?

Selecting the Correct Level-One Error Structure

There are two commonly used approaches to selempp@uopriate level-one covariance
structureOne method is to use fit indices to appropriatelgst the best model to approximate
the data. The other option is to specify the lewsd-error structure a priori with either an
uncorrelated or correlated error structure. Botthee methods have been studied significantly
in terms of longitudinal data or growth curve maoxig!

Fit criteria. The first method is to allow the fit information $elect the appropriate error
structure. Several researchers have utilized tethaod of selecting a structure By
examining multiple structures and using log likebkl tests or information criteria to select an
error structure (Ferron, Dailey, & Yi, 2002; Gom2205; Kesselman et al., 1999). Commonly
used fit indices include deviance statistic, AIEBIC (Ferron, Dailey, & Yi, 2002; Singer &
Willet, 2003).

There are several advantages to using index cosgpaeaipproaches, such as the Akaike
Information Criterion (AIC) and the Bayesian Infation Criterion (BIC). One advantage is
that it allows the comparison of non-nested mod&mther benefit to using to index
comparison is that the indices quantify the detpeghich the model represents an improvement
over the competing models (McCoach & Black, 2008jlditionally, Liu, Rovine, and Molenar
(2012) also suggested that the most general agptoamompare models regardless of the type

of misspecification is to look at the AIC and BIi@.their study, the authors hypothesized that
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there could be a difference between the strucaqaation modeling (SEM) approach and the
hierarchical linear modeling (HLM) approach. Thhgdrized that the difference could stem
from the method by which each approach estimateg#nameters. For example, the SEM
approach can separately model the means and thea@ose parts and evaluate the fit of the
covariance model alone; meanwhile, the HLM approacrhultaneously estimates the means
model and the covariance model (Liu, Rovine, & Mwale 2012). However, they found that the
fit indices performed well with both small and largample sizes.

The formulas for the two indices appear similat, the indices are philosophically
different. The Bayesian approach, or BIC, treatrgwmodel as the possible “true” model, and
estimates the likelihood of the model being theexirmodel. For the AIC, this index uses the
prediction of future data as the key criterion (MeCh & Black, 2008). Although some
researchers may prefer one index over the otheGddch & Black (2008) suggest the use of
both the AIC and BIC in combination with chi-squditference tests for nested models. The

formulas for the three fit indices are shown below:

AIC=D+2p (25)
AlCc=D+2p*Q/(n-p-1)) (26)
BIC =D +In Q)*p (27)

For all of the indices, D represents the deviar2el(). However, for the AICp = the
number of parameters estimated in the model. SheedlIC’s penalty term isf2the deviance
must decrease by more than 2 per additional pasametorder to favor the more complex
model. For the BICn represents the sample size and the number of parameters estimated in

52

www.manaraa.com



the model. In multi-level models, it is not cleanieh sample size should be used. SAS PROC
MIXED uses the number of independent sampling wastthe sample size. At small sample
sizes, the BIC will favor more parsimonious modabn the AIC and the chi-square difference
tests.

Furthermore, Raftery (1995) has suggested guidefmeinterpreting changes in BIC.
After subtracting the BICs for the two competingdatls, a difference of 0-2 suggests weak
evidence favoring model 2 over model 1; differenae2-6 provides positive evidence for model
2 over model 1; BIC differences of 6-10 provideasy evidence for the model 2 over model 1;
and lastly, differences greater than 10 providag s&ong evidence for model 2 over model 1.
For the AICc, a finite-sample corrected versiothaf AIC, where n represents sample size.
Therefore, AICc gives a greater penalty than th€ for extra parameters.

Ferron, Dailey, and Yi (2002) wanted to analyze dbnsitivity of model selection
criteria to the misspecification of the level-omeoe structure. The effects of the misspecification
were then examined for estimates of variance paes)eestimates of the fixed effects, and the
tests of fixed effects. They found that the fixé@ets were not biased. This finding aligned with
past simulation work. They also found that the A&lterectly identified only 47% of the time.
Their results varied greatly as a function of sargte (larger sample sizes gave more precise
estimates). There was also a notable interactibmdas the series length and sample size
(sample size matter more when there were shontissdength). The implication of this study
was that the fit indices do not properly identify tcorrect error structure. This study also
demonstrated that if the error structure was naletex correctly, then this would lead to even

more bias in the variance components.
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Another study that investigated fit indices was $&1an, Algina, Kowalchuk, &
Wolfinger (1999). This study sought to compare thfterent types of fit indices for selecting
covariance structures when looking at repeated unesslesigns. They found that neither fit
index, the Akaike (1974) or the Schwartz (1978)farmly chose the correct covariance
structure. This study indicated that although theeneed to model the correct covariance
structure, due to powerful tests of the fixed dffegrameters, using fit indices is not a reliable
method for choosing the correct error structureesenfindings are very similar to Ferron,
Dailey, and Yi (2002); both studies suggested tieeelack of reliability in using fit indices to
correctly identify the correct error structure @peated measures designs.

Selecting error structure a priori. The second method to select a covariance steictur
for X a priori has also been studied substantially enldimgitudinal area. Sivo, Fan, and Witta
(2005) investigated the degree to which autocaroelan its various forms biases the estimates
obtained in latent GC modeling. This study had imtended purposes: 1) to introduce how
growth curve models and MA and ARMA models mayrtegrated; and 2) to investigate the
degree to which autocorrelation in its various feffAR, MA, and ARMA) biases the estimates
in GC modeling. They found that unmodeled autadation could lead to biased results. Their
suggestion was to always model autocorrelatiomaspéion to improve model fit when applying
GC modeling with at least 4 time points in longihal research. The authors further suggested
more work was necessary that focused on fewer mrat determine whether the conclusions
of the study hold. Another study, Kwok, West, anagéh (2007) looked at the effects of
different forms of misspecification (underspecifioa, general misspecification, and
overspecification) of the within-subject residutslongitudinal models. They found that

underspecification and general misspecificatiotheflevel-one error matrices were more likely

54

www.manaraa.com



to result in overestimation of the standard eradrhe growth parameters, which resulted in
lower statistical power as compared to the comspetification. As a result, the authors
concluded that overestimation of the matrices weoee likely to result in slightly smaller
standard errors of the growth parameters whichdeadpossible gain in statistical power. These
findings led the authors to suggest that it is bestdopt a slightly overspecified, such as AR(1),
error structure if researchers are not sure ath@utarrect error structure for their data.

In a later study, authors examined the performafeetwo-level model when
autocorrelation moving average is present, butitita were misspecified and modeled as either
o°1, first-order autocorrelation, or unstructured coaade matrix (Murphy & Pituch, 2009).
Some key findings of this study were that the fieéf@cts were unbiased as was found in
previous research (Ferron, Dailey, & Yi, 2002; Rentolish & Bryk, 2002). The authors also
found that overspecifying the level-one error sinoe with type = UN was a viable option with
sufficient sample size. Finally, the authors codeldithat the variance components were biased
regardless of correct specification. This reseagdin suggested that when serial dependence or
autocorrelation is present, the fit criteria wilitralways correctly identify the covariance
structure. Due to this lack of reliability of thié ihdices, the author chose to always overspecify
the error structure using type = UN. However, Siraged Willet (2003) explicated that
overspecifying the covariance matrix using the mtdtired matrix was not typically ideal. The
authors suggested the desire for the more parsousmodel. The authors explicated that their
study was an example of fitting various types otrmas, including compound symmetry, first
order autoregressive, and a toeplitz, and thergubm fit indices to determine the correct error
structure. They found that the toeplitz error sinue most appropriately fit their data based on

the results of the fit indices.
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Sensitivity analysis Additionally, researchers can perform some sbseasitivity
analysis, where they can fit several level-one damnae structures and see how these different
models affect the precision of the parameter esésmdased on the consequences to the
estimates, then a research can choose the mosate@vel-one error structure. Faith, Allison,
and Gorman (1996) recommended that meta-analystdrgnto look at the effect sizes of one
method, then repeating analyses using another gfmarture specification as a form of
sensitivity analysis.

A general conclusion for the literature from theduer repeated measures area that can
be drawn was that researchers do not typically kwbwat type of error structure would best
approximate their data. Therefore, researchersailpihave three options: 1) to use fit
information criteria to select the correct levekarror structure or 2) to choose their error
structure a priori. 3) To perform some form of sewvisy analysis.

Chapter Summary

Single-case designs are used extensively to detertreatment effectiveness or how a
treatment may affect a single subject or multi@dipipants within a study. There are several
commonly used designs in single case researchmbisé popular design is the multiple-baseline
(Shadish & Sullivan, 2008). This design is poweduek to its ability to reduce internal validity
threats, or the possibility that anything othemtlize treatment or intervention could be causing
the participants to change the observed behavioutmome at the time the intervention is
introduced (Barlow, Nock, & Hersen, 2009; Kazdif12).

One important feature of single-case interventisribe repeated measurement of a case
or participant across multiple time points, to asgbe treatment’s effect on one specific case or

participant (Kazdin, 2011). These repeated obsemnatvithin one participant have led to a
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great debate about how correlated one observaitmthe next observation and so on and so
forth. Autocorrelation can affect how the researchterprets their intervention effect, no matter
the type of analysis that is used (Barlow, Nock;i&rsen, 2009; Kazdin, 2011). Visual analysis
is the most commonly used technique applied tdsiogse designs; however, this analysis has
limitations in the presence of correlated level-en®r structures (Brossart et al., 2006; Huitema,
1986; Kazdin, 2011; Maytas & Greenwood,1990). Selvesearchers have suggested the need
for visual analysis to be supplemented by someststal technique (Barlow, Nock, & Hersen,
2009; Kazdin, 2011). Nevertheless, some of the contyrused statistical techniques also show
concerns in the presence of correlated errors.

The multi-level model allows flexibility in modelghautocorrelation; moreover, the
model allows for different level-one error speations. Single-case researchers are occasionally
interested in more than synthesizing data acrogipants within a study; they are also
interested in synthesizing across studies. Thersereral meta-analyses that have been done
involving single-case research designs; nonethellesee still has not been a consensus on the
best way to synthesize these data. Van den Noof2@@8) proposed a three-level model that
can be used to synthesize raw data across singgestadies. There are several ways to specify
the three-level model, and one of those decisiemghether or not to model autocorrelation. If
choosing to model autocorrelation, how do we knloat the level-one error structure has been
correctly specified in the model? This work has yeitbeen studied in the single-case literature,
however, literature from the broader repeated nreaswr longitudinal area was utilized to
inform this study.

Obtaining the correct within-subject covarianceisture has been a huge discussion and

studied extensively in growth curve modeling (GCdelong) or longitudinal data analysis
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(Kesselman, Littell, & Sivo, 2000). There are twaranonly used approaches to the selection of
an appropriate level-one covariance structure wisamg multi-level model€One method is to
use fit indices to appropriately select the bestleh¢o approximate the data (Ferron, Dailey &
Yi, 2002; Gomez, 2005; Kesselman et al., 1999). dther option is to specify the level-one
error structure a priori with either an uncorrethte correlated error structure (Kwok, West, &
Green, 2007; Murphy & Pituch, 2009).

The study examined at the appropriateness of th@fufst indices to correctly identify
the level-one error structure. More specificalhg study analyzed the percentage of times that
each fit index appropriately guides the researtinéne correct level-one error structure.
Secondly, the study looked at the consequencessspecifying the level-one error structure

when synthesizing data across single-case studien wtilizing the three-level model.
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CHAPTER THREE: METHOD

This chapter outlines the proposed methods forstudy, including the purpose, research
guestions, sample, design, and analysis.
Purpose

There have been a number of studies that havezatafit indices and properly
identifying the correct level-one covariance stmes in terms of the general longitudinal data,
or growth curve models. A thorough literature rewieas uncovered no research to date looking
at fit indices in terms of single-case researchgisaulti-level models. Moreover, no research
was uncovered regarding the consequences of diffesans of specification of the level-one
error structure when using a three-level meta-aitadyngle-case model.

The purpose of the study was two-fold: 1) to deteenthe extent to which the various fit
indices (post hoc selection) can correctly identifg level-one covariance structure, and 2) to
investigate the effect of various forms of missfieation of the level-one error structure when
using a three-level meta-analytic single-case model

Research Questions
1. To what extent do fit indices (AIC, adjusted Al log likelihood ratio test)

correctly identify level-one covariance structureen using a three-level meta-analytic
single-case model?

2. To what extent are tHexed effect parameter estimates from a three-level meta-dnalyt
single-case model biased as a function of desigpoifa (number of primary studies per

meta-analysis, number of participants per priméuyys series length per primary
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study), data factors ( variances of the error teosgariance structures, level of the
treatment effect), and analysis factors (form afcsjication)?

. To what extent areonfidence interval width and coverage for the fixd effectsfrom

a three-level meta-analytic single-case model &dtkas a function of design factors
(number of primary studies per meta-analysis, nurobparticipants per primary study,
series length per primary study), data factorsigvees of the error terms, covariance
structures, level of the treatment effect), andyamafactors (form of specification)?

. To what extent are thEype | error and power for the fixed effectsfrom a three-level
meta-analytic single-case model affected as a ifomactf design factors (number of
primary studies per meta-analysis, number of gpgrds per primary study, series
length per primary study), data factors (varianafethe error terms, covariance
structures, level of the treatment effect), andyamafactors (form of specification)?

. To what extent are theariance componentparameter estimates from a three-level
meta-analytic single-case model biased as a fumcfiaesign factors (humber of
primary studies per meta-analysis, number of gpgrds per primary study, series
length per primary study), data factors (varianafethe error terms, and covariance
structures, level of the treatment effect), andyamafactors (form of specification)?

. To what extent areonfidence interval width and coverage for the vaance
componentsfrom a three-level meta-analytic single-case maffelcted as a function of
design factors (number of primary studies per nagi@lysis, number of participants per
primary study, series length per primary studyjadactors (variances of the error
terms, covariance structures, level of the treatra#fact), and analysis factors (form of

specification).
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Design

The study used a 2x2x2x2x2x5x7 factorial desigweSeexperimental variables were
manipulated in this study: 1) the number of primstiydies per meta-analysis (10 and 30); 2) the
number of participants per primary study (4 an¢g 3)the series length or number of
observations per participant (10 and 20); 4) vexes of the error terms (most of the variance at
level-one: §°=1; %, = 0.5, 0.05, 0.5, 0.05%,, = 0.5, 0.05, 0.5, 0.05] and most of the variarice a
higher levels: §*=1;%, = 2,0.2,2,0.2%, = 2, 0.2, 2,0.2]); 5) the level for the fixeffects (
0 or [2 for the shift in level and .2 for the shiitslope]); 6) the level of autocorrelation ahé t
moving average parameter, respectively: [(0,@, 0), (.4,0), (.2, .2), (.4, .4)]; and 7) the form
of model specification [i.e. ID, AR(1), ARMA (1,1)and error structure selected by AIC, AICC,
BIC, and the LRT. The next section will providenartough description of the conditions that
were simulated in this study.

Conditions Simulated

Number of primary studies per meta-analysis.These values were chosen based on
several initial studies that have been conductehlisarea. First, a review that was conducted by
Farmer, Owens, Ferron, and Allsopp (2010) on 3§lsicase meta-analyses in social science
between the years of 1999 and 2009 found thatuh#er of primary studies included in the
meta-analyses ranged from 3 to 117. Additionalgrnker et al. found that 60% of the meta-
analyses included less than 30 primary studies.mwead Ferron (2011) conducted an initial
study that looked at the three-level analytic mayeithesizing raw data from single-case studies
and used three levels for the number of primarglistuper meta-analysis: 10, 30, and 80. The

authors found that the confidence interval arounedfixed effects approached the nominal level
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of .95 as the number of studies included in thearagialysis increased. In another study, the
number of primary studies used was 10 and 30 (&gtllal., 2012). The authors found similar
results that the confidence interval became mazeige as the level-three sample size increased.

Initial applied work was also done to further infothe conditions used in this study.
Petit-Bois (2012) conducted a meta-analysis of srattics interventions and found only 10
studies that used comparable dependent variabgbematical problem solving, and met the
inclusion criteria of the study. Another appliedtezanalysis using the raw data from single-case
studies included the dependent variable, readirenfly, and in this study, Baek, Petit-Bois, and
Ferron (2012) found 20 studies that appropriatedy tne inclusion criteria. The conditions that
were used in this study were based on all of tbeeafentioned work that has been done thus far
in this area. The number of primary studies in eaaeta-analysis had two levels: 10 and 30.

Number of participants per primary study. The survey of single-case meta-analyses
found that the majority of single-case studies ined less than or equal to 7 participants
(Farmer, Owens, Ferron, & Allsopp, 2010). Kazdi@X1) recommends that in order to see a
treatment effect “clearly” that a minimum of thieaselines is necessary. However, the author
goes on to explain that the more baselines thexelas “clearer” the intervention effect is.
Specifically, intervention effects are more evidaatoss several (8 or 9) persons or situations
(Kazdin, 2011). An overview of the simulation wdHat has been conducted revealed that in
two other studies, Owens and Ferron (2011) useddwalds for the modal number of
participants: 4 or 8; and the other study used 4 sgven participants for their Monte Carlo
study (Ugille et al., 2012).

A further examination into the applied work thasheeen conducted in this area exposed

that the average number of participants for eacheprimary studies was 3.25 (Petit-Bois,
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2012) and 4.60 (Baek, Petit-Bois, & Ferron , 2012 survey of the characteristics of single
case designs, Shadish and Sullivan (2011) fourtdhieessample sizes ranged from 1 to 13, with
an average of 3.64. Based on these findings angdrdvious work that has been done in terms
of Monte Carlo studies, there were two levels aggpfor number of participants: 4 and 8.

Series length per primary study.Shadish and Sullivan (2011) found that of the 809
studies that were reviewed over 90% had 49 or f@lservations. Moreover, previous
simulation work using the two-level model for armhg single case data used series length of
10, 20, and 30 (Ferron et al., 2009; Ferron, Farme®wens, 2010). In the Monte Carlo
studies, the series length had three levels forobiee studies: 10, 20, and 30 (Owens & Ferron,
2011); another study that was recently conducteldided the series length with two levels: 10
and 30 (Ugille Moeyaert, Beretvas, Ferron, & Van tioortgate, 2012). The authors in the
latter study, in 2012, Ugille et al. found that thest bias conditions in their data set were the
conditions that contained the shortest series legtel-one sample size of 10. In the area of
applied work, Petit-Bois (2012) included studiestman average series length of 12.55. These
prior studies were used to determine the seriaggheor this study. The series length for this
study included series lengths of 10 and 20.

Baseline stability (lacking new trends or high waaility) is most important when
introducing the second baseline and any other comise baselines to intervention. The focus
should not be on the number of days, but rathe@herclarity of the pattern in determining the
decision (Kazdin, 2011). The time at which the iméation was introduced staggers across
participants within studies, creating the multipbeselines for the study. This time will depend
on the combination of the number of participantd data points for each. These combinations

are reflected in the table below. For example, wihene are four participants the number of
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measurement occasions for each participant eqeral$-or the first participant, the treatment
began on the fourth observation; for the secontiggaaint on the fifth observation; for the third
participant on the seventh observation; and fotdkeparticipant, the treatment began on the
eighth observation. The treatment will last urttg tenth measurement occasion for all four
participants. For the studies that include eightigipants, the eight participants were paired to
form 4 groups. These 4 groups of dyads will theloibéhe same intervention schedule as the
studies that only have 4 total participants. Famegle, the first dyad, began treatment on the
fourth observation (4); for the second dyad onfiftte measurement occasion (5), the third dyad
on the seventh observation (7), and for the laist {hee treatment began on the eighth
observation (8). This is represented as 4-5-7tBertable below. The treatment will last until the
tenth measurement occasion for all four pairs @iddy

Table 2 below illustrates the multiple baselinasdib four combinations of the number of
participants and total number of observations casne2ment occasions.
Table 2

The Combination of Treatment Introductions for Wegious Numbers of Participants and
Observations

Number of Participants for each study

4 8 (4 pairs)
Total '\]'c”mber 10 4-5-7-8 4-5-7-8
0
Observations 20 6-9-12-15 6-9-12-15

Variances of the error terms.The variances could be separated into two disgraips:
either having most of the variance at level-oneiavee within participants (Ferron et al., 2009;
Van den Noortgate, 2008) or having most of theararé at the higher levels, the variance
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among the participants and the variance amongestudcluded in the meta-analysis (Van den
Noortgate, 2008). Based on these findings, elesnafinhe within-study (across participants)
variance matrixk,,, were manipulated to represent both scenariossikwlicity, the
covariances or off-diagonals were set to 0 (theas mo covariances) for the within-study (across
participants) variance matrix. Therefog, is a diagonal matrixy, =
diag(o;,, 04,04, 0.,). If the within-person (level-one) variance is &e1..0, setting the four
diagonal elements of, to values of 2, 0.2, 2, 0.2 (for the variancethmbaseline’s intercept,
baseline’s slope, shift in level, and differencdaseline and treatment’s slope, respectively)
represents a relatively large amount of within-gt(ldvel-two) variability. Conversely, setting
the four diagonal elements af, to values of 0.5, 0.05, 0.5, 0.05 (for the varemin the
baseline’s intercept, baseline’s slope, shift irele and difference in baseline and treatment’s
slope residuals, respectively) represents a relgtiarge amount of within-person (level-one)
variability.

The same idea was applied to the level-three vegiamatrix, the variance across, or
between-studies. The elements of this varianceixnaare 2, = diay( o5, 05,, 0%, 05,) equal
to 2, 0.2, 2, 0.2 to represent a relatively lang@ant of between-study variability (level-three)
and 0.5, 0.05, 0.5, 0.05 to demonstrate a relgtslall amount of between-study variability.
Owens (2011) found that the level-two variance congmts tended to overcover when most of
the variance was at level-one, however, the ldwaet variance components tended to
undercover when most of the variance was at lemel-@he study applied similar conditions for
the error variances. Therefore, the study had tvwlitions, most of the variance at level-one:
[¢°=1;%, = 0.5, 0.05, 0.5, 0.05%, = 0.5, 0.05, 0.5, 0.05] and most of the variarid@@higher

levels: p>=1;%, = 2,0.2,2,0.2%, = 2, 0.2, 2, 0.2]. Note that the variance oféh®r terms
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for the residual variance was held constant at&r0ss conditions. Thus, the conditions that
have most of the variance shifted to the uppersavave more total variance.

Levels for the fixed effects.The level for the treatment effect was typicalkefil in
prior research, in which the aim in those studias wot to look at the power estimates for the
study. Those prior works (Ferron et al.,2009; Osy&®11) were focused on looking at the bias
in the point estimates and interval coverage ferftked effects and the variance components
(Baek & Ferron, 2013; Owens, 2011). However, fos gtudy, the power estimates and the type
| errors were outcomes of interest, therefore twels for the fixed effects were selected. The
levels for the fixed effects were either no effeet, O, for both the shift in level and the simift
slope. Alternatively, the levels for the fixed effe were 2 and 0.2 for the shift in level and shift
in slopes, respectively.

Level-one error structures. The data were generated using five different lered-error
structures. First, the simplest error structure wsesd; this structure will assume no
autocorrelationt = 6?1 (Raudenbush & Bryk, 2002). The second error strecthat was
generated assumed a first-order autoregressivestell AR(1).In past simulation work that
examined autocorrelation in terms of the multi-lewedel, specifically the two-level model in
this case, the levels of autocorrelation were D, ©.2, 0.3, 0.4 (Ferron et al, 2009; Ferron,
Farmer, & Owens, 2010). These values coveredahgerthat is typically found in behavioral or
educational research (Huitema, 1985; Matyas & Gueenx, 1996). Likewise, there have been
additional Monte Carlo studies that have inveséddhe appropriateness of the three-level
model with synthesizing raw data across single-stisg#ies, the levels of autocorrelation used
were 0, 0.2, and 0.4 (Owens, 2011). The autharddbat within-person residual variance

became more biased as the level of autocorrelatmrased. For this study, there was five
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levels for the autocorrelation and moving averagameters, respectively: the ID model: [0, 0],
autoregressive model: [.2, 0], autoregressive mg¢del0], moving average autoregressive
model: [.2, .2], and moving average autoregressigdel: [.4, .4]. These values are commonly
used in educational research.

Form of model specification.The study evaluated the consequences of multiple
approaches to level-one error structure speciboaincluding post hoc specification based on a
range of fit indicesinda priori specification of relatively simple to relativelgroplex
covariance structures. These methods were chogmarallel the options used by analysts in
practice and in past research in broader longialdasearch. The use of fit indices or post hoc
model selection has been extensively examinedeitbader repeated measures literature
(Ferron, Dailey, & Yi, 2002; Gomez, 2005; Kesselmalgina, Kowalchuk, &Wolfinger, 1999).
Commonly used fit indices include deviance statsstAIC, or BIC (Ferron, Dailey, & Yi, 2002,
Singer & Willet, 2003). In general, the studiesriduhat neither of the fit indices uniformly
selected the correct level-one error structure.

The second method utilized in selecting the lewed-covariance structueepriori. Sivo,
Fan, and Witta (2005) wanted to investigate theeketp which autocorrelation in its various
forms (AR, MA, ARMA) biases the estimates in GC ralnag. They found that unmodeled
autocorrelation could lead to biased results. Tutkas further suggested that more work was
necessary with small samples to determine if tmelasions of the study would still hold.
Additionally, Kwok, West, and Green (2007) conddcgesimilar study which sought to
investigate various forms of misspecification (ursgecification, overspecification, and general

misspecification) of the level-one error structdrethe study, the authors concluded that it is, at
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times; best to adopt a slightly overspecified lewa error structure. The study investigated the
appropriateness of these methods to small sampkegle-case designs.

Based on the conditions used in these prior wahks study examined both methods: fit
indices (post hoc selection) aadriori selection of the level-one error structure. More
specifically, there were seven levels of this magecification factor: (1a priori selection of
independent, ID; (2& priori selection of first-order autoregressive, AR(1);d3riori selection
of first-order autoregressive first-order movingege, ARMA(1,1); (4post hocselection of
either ID, AR(1) or ARMA(1,1) based on the AIC; (@)st hocselection of either ID, AR(1) or
ARMA(1,1) based on the AICC; (@ost hocselection of either ID, AR(1) or ARMA(1,1) based
on the BIC; and (7post hocselection of either ID, AR(1) or ARMA(1,1) based the likelihood
ratio test. The AIC selected model was the mduai produced the lowest AIC value. The
AICC selected model was the model that producedbthiest AICC value. Lastly, the BIC
selected model was the model that produced theslioBIE€ value. The lowest value was used as
the model selected by each fit index, no fixedeaidt, such as difference of at least 0.5 or 1, was
used. To determine the model selected by the LRfEreinces in fit at the .05 level were
examined among the three models. If no significkffikrences were found the ID specification
was selected. If the AR(1) produced significafyter fit than the ID, but not the ARMA(1,1),
then AR(1) model was selected. Finally, if the AR{,1) had significantly better fit than the
other two previously discussed models, then the ARIVL) was selected. Type | error was not
controlled for the various tests, for example,tfe@ ARMA model(1, 1) to be selected, two tests
would have had to be rejected at the .05 levelleralbelow shows a sample of the possible
scenarios for the log likelihood ratio test (LRThis led to a total of seven levels for the

analysis factor.
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Table 3
A Sample of the Tests that were used to Sele@dfrect Model for the LRT

ID vs. AR ID vs. ARMA AR vs. ARMA Model Selected
Reject Reject Reject ARMA
Reject Reject FTR AR
Reject FTR FTR AR

FTR FTR FTR ID

The seven experimental factors that were prewodsscribed fall into three generic
categories. The first three factors are desigrofactactors 4, 5, and 6 represent the data factors

Lastly, factor 7 is the analysis factor.

Sample

Crossing two levels for the error variances with o levels of the fixed effects with
five levels of covariance structures that were gateel led to 20 conditions, which were then
crossed with the 8 combinations of the numberwdiss included in the meta-analysis, the
number of participants in each study, and the nurabebservations in the series length. For
each of the design and data factors (160 condjti@®0 simulated data sets were generated
using SAS IML (SAS Institute, Inc., 2008). The wseb000 data sets led to a standard error of
.0003 for the confidence interval estimate at #feconfidence level, which was an appropriate

level of precision for this study.
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Data Generation
The data were generated using Van den Noortgadtessdevel model for the meta-
analysis of single-case data. Equations 28-36 bedpnesent the model formally,

Level 1 Equation:
Yik = Bok + Buk* phasge+ Poj* timey + Pa* phasgtime’jx + e, e;j%,~N(0,Z,) (28)

Level 2 Equations:

Bojk = Book + Uojk Ug jk (29)
Bijk = Orok + Ugjk Usjk (30)
Bajk = B30k + U3k Usjk (32)

Level 3 Equations:

Book = oo + Voo (33)
Or0k = (100 + Viok ZOOI‘ (34)
Aok = 200 + Vook v;gz ~N(0, Zv) (35)
O30« = 1300 + Vaok V3o (36)

In Equation 28, the value of the dependent variahleneasurement occasiofor
subjectj of studyk (Yij) is regressed on a dummy variable phase, thaleqgoe if measurement
occasion occurs in the treatment phase, otherwise it igkeuO in the baseline phase. The
score on the dependent variable on measuremergioncdor subjecy of studyk is Yjx. The
phasevariable is a dummy-coded indicator reflecting thiee the observation is in the baseline
phase fjhasgc = 0) or the intervention phasghiasgx = 1). The coefficient for theme variable
represents the slope during the baseline phiasey ,and the coefficient for the interaction term,

phasg*time’i, reflects the difference between the baseline aredhviention phases’ slopes. The
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timevariable can be centered in a variety of ways twinmay be helpful for interpreting the
model parameters (Baek et al., 2013; Van den Nateig Ferron, 2013).

Specifically, for this study, thigme variable is uncentered for the baseline phasejses|
such that for the first measurement occasion irbtseline phaséimey = 0. However, théme’
variable in the interaction terrphasec*time’jxis coded such thaime'y = O for the first
observation in the intervention phase. Therefdre expected score during the baseline phase if
extended one observation into treatment is equ&jito and the expected score of the treatment
phase at this same point in timeig higher. As a resulfi refers to the immediate level
change associated with an intervention (Huitema @&®&an, 2000)B,« represents the linear
trend during the baseline phase, and the lineadtier the treatment phase wg higher. In
other wordspsj indicates the effect of the intervention on the@dréhat is the difference between
the baseline phase and treatment phase slopespRadindpsx are needed to fully describe the
treatment effect. At the second level, Equatid382 describe the new regression equations for
the variation over subjects. Equation 29 describasthe baseline performance for subject j
from study k equals an overall baseline for stughyus some random deviation. Similarly,
Equations 30-32 indicate the variation of the treait effect, linear trend in baseline, and the
effect of the intervention on linear trend, respesty, over subjects from the same study. The
next set of equations can be thought of similaslyte second level equations.

At the third level, the variation across subjastsodeled using Equations 33-36.
Equation 33 represents the baseline mean for #tagythe overall baseline across all of the
studies plus some random deviation. The same teled by Equations 34-36 for the variation
of the treatment effect, linear trend in baselarg] the effect of the intervention on linear trend,

respectively, across studies. It should be ndtatldrrors on levels 2 and 3 are typically
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assumed to be normally distributed and have a mme@rand a variance of 1.0, however for this
study the variances were as previously discus$éeére was no covariance in the errors between
levels and between errors at level-two and leviedeh

The within-person error is modeled @y o’ represent the variance ef). Errors from
the within-person, or level-one error structurerevgenerated using the ARMASIM function in
SAS Version 9.3 (SAS Institute, 2008). There were @ifferent level-one error specifications.
The first represented an independent or ID level-emor structure with normal distribution,
N(O, 1). The second generated the first order agtessive level-one error structure, AR(1),
autocorrelation coefficient of .2 or .4. Lastlyethrst-order autoregressive first-order moving
average, ARMA(1,1), level-one error structure waleled, with both an autocorrelation
parameter and moving average coefficient of .2.dndligned with the values that were used for
the autocorrelation parameter. The three equaf{®ns89) below represent the three different
level-one error specifications, ID, AR(1), and ARMA1), respectively. The data simulation
was checked by examining the matrices produceddt stage. A small number of data sets
were simulated to ensure that data specificatiomsecurate. The data set was analyzed and

then reviewed to ensure that parameter estimages@se to expected estimates.

Gk = & (37)

6k =.3 Y1 + & (38)

8k = .3 Y1) - - 31t @& (39)
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Analysis of Each Simulated Data Set

Model Specification

Each simulated data set was analyzed to providdtsdser each of the seven levels of the
analysis factor. Moreover, each simulated datavastanalyzed once using an ID specification
of the level-one error structure, once using anJARpecification, and once using an
ARMA(1,1) specification. In each case the threeslanodel was estimated using restricted
maximum likelihood (REML) via PROC MIXED with thedfiward-Roger degrees of freedom
method in SAS version 9.3 (SAS Institute Inc., 200®e confidence interval for the variance
components were constructed using the Satterthapgeoximation, which is the default in SAS
9.3.

Table 4 below represents the combinations for thvagance structure that was used in
data generation versus the model that was useathtygze the data set.
Table 4

The Combination for the Type of Level-one Errou8iure Generated and the Model
Specification

Model Specification

Data Generated 1D AR(1) ARMA(1, 1)
ID Correct Over Over
AR(1) Under Correct Over

ARMA(1,1) Under Under Correct

For example, the first row represents a data s¢twths generated assuming an
uncorrelated level-one error structues o°1. The data set was then analyzed using three
distinct model specifications: the correct speatficn and two overspecifications-- a first-order

autoregressive, AR(1) and a first-order autoregressoving average model, ARMA (1,1). For
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further illustration, the next row represents tiat data were generated using the first-order
autoregressive model. That data were then analyzieg the same three distinct models.
However, underspecification was the uncorrelateor estructure, correctly specified was
represented by AR(1), and the first-order autoregjve moving average model demonstrated
overspecification.

The results were further examined to determine whtandex correctly specified the
level-one error structure. More specifically, adnlies were created to keep track of the accuracy
of the fit indices in terms of selection of thedéwne error structure. Additionally, the AIC,
AICC, BIC, and LRT were examined, and this inforimatwas used to identify the model that
would have been selected based on each of thelidtas. Moreover, the results from the three-
model specifications that were previously mentiomede examined, in addition to the results
that were produced by each of the various fit ieglicThis led to the seven levels of the analysis
factor.

Table 5 below illustrates an example of three data and the hypothetical parameter
estimates (true estimate;oo= 2.0) that would result from the three-model speaiions and the
estimates that would result from the models beéalgcted by the fit indices. These indices may
select the correct specification or one of the irext specifications. Bolded results represent the
hypothetical true level-one error structure. Acaogdo the table below, the results for the first
data set illustrate the estimated fixed effectsefmrh of the three level-one error structures (the
first 3 columns of the table). The first row alsaludes results for each of the models selected
by the various fit indices. Specifically, the AIGARAICC selected the model with= ID; the
BIC selected the model with = ARMA(1,1); and finally, the LRT selected the emt modelX

= AR(1). Similarly, for the second data set, thesterror structure is ID. For that data set, all of
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the fit indices (AIC, AICC, BIC, and LRT) correctielected the level-one error structure.
Lastly, for the third data set, the true level-ener structure is ARMA(1,1), and only the LRT

correctly selected the ARMA(1,1) model.

Z\ibIIE?(:mple of Results from Three Simulated DatafSethe Shift in Level Effect);go.
A priori Model Selection Fit Indices Model Seleaxti
Data set 1D AR(1) ARMA(1,1) AIC AICC BIC LRT
1 1.95 1.98 1.92 1.95 1.95 1.92 1.98
2 2.02 1.97 1.95 2.02 2.02 2.02 2.02
3 1.93 1.99 1.99 1.98 1.93 1.93 1.99

Based on the model, the shift in level was modaked change in level between the
baseline and the treatment phases with the fixiedteor the shift in level((100) set to 2.0. The
effect of the intervention on the trend was mode&gsdhe change in slopes between the baseline
and the treatment phases with the fixed effectferintervention effect of the slopesifg) set
to 0.2. Estimates were also obtained for the ngpaverage parameter, autocorrelation
parameter, variance within participants, variamcbdseline levels across participants and
studies, variance in treatment effects (shift irelpacross participants and studies, variance in
baseline slopes across participants and studidsyaance in treatment effect on the trends
(change in slope) across patrticipants and studies.

Summary of analyses
First, the study investigated the accuracy of ihiadices in selecting the appropriate

covariance structure when using the three-levelehtwdmeta-analyze single-case data. An
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indicator variable for each fit index was usedndicate whether or not the fit index correctly
identified the correct level-one error structurbislvariable was averaged across all 5000 data
sets to obtain the proportion of times that eacimélex correctly identified the error structure.
Next, the accuracy of the fixed effects and theavenre components were analyzed using the
following dependent variables: bias (see Equati@b&ow) can be described as the difference
between the known parameter and the estimateds/alu@ the model output, for two of the
four fixed effects(Jooo, 100, oz, 110) and all of the variance components for level-asfey,
and the moving average coefficient); level-twg , o;..); and level-three 7, 0;;,); this
difference or deviation was then averaged acrd€8aD data sets to obtain the average bias.
Additionally, relative bias was calculated for {h@rameters whose known values were other
than 1 and did have levels of the factor that idetli0. The RMSE represented the square root of
the sum of the squared residuals; this was cakxilay squaring the deviations between the
estimated parameter and the true parameter, tékingverage across all 5000 data sets, and
finally the square root to obtain the RMSE (seedfigpnm 41).

Confidence interval coverage (the proportion of¢befidence intervals at the .95 level
that contained the true parameter estimates faér thet fixed effects and the variance
components) was again tracked with an indicataabée that determined whether or not the
parameter estimate fell within the confidence waérange. This indicator was then averaged
across the 5000 data sets to obtain the propastioonfidence intervals that contained the true
parameter estimates. Similarly, confidence intewidth (the average difference between the
upper and the lower limits of the 95% confidendenvals for both the fixed effects and the
variance components) was calculated for each 5@ data sets. The width was averaged

across the 5000 data sets to obtain the averadieleoce interval width. These outcomes were
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computed for each of the 1120 conditions obtainedrbssing the 160 data and design
conditions with the seven levels of the analystdda The percentage of non-convergence was
also computed for each of the 160 conditions.

5000

2(7711 _7’11)

bias=+t——F—
5000 (40)
5000 R 2
Z (71j — 73 )
RMSE=|| =

5000 (41)

Analyses to Examine Relationships between Designdtars and Outcome Variables

Research Question One

The evaluation of the accuracy of the fit indicesorrectly select the level-one error
structure was addressed by examining the percenfagee that each fit index appropriately
guided the researcher to the correct error strackor example, data were generated using a
first-order autoregressive level-one error struetliihe model was then run using all three of the
aforementioned level-one error specifications,tive misspecified models (uncorrelated and
first-order moving average) and the correct moddirgt-order autoregressive). The results of
the three models was compared to estimate the gropof times the AIC correctly identified
the model (smallest AIC value), the proportioniofes the BIC identified the model (smallest
BIC value) the proportion of times the AICC iderd the model (the smallest AICC value), and
the proportion of times the likelihood ratio telSR(T) correctly identified the model (LRT

statistically significant at& = .05). Also, the results of the model selectedheyfit indices was

77

www.manaraa.com



used for comparison of model selectedibindices or post hoc selection versus model selected
a priori. The model selected a priori is the model the risotthat are run without the use of the
fit indices. For example, the ID, AR(1), and ARMA 1) model was run to see how these results
compared to the fit-index selected models. Addalbn to examine which design factors
explained the variability that was found amongfthendices, general linear modeling (GLM)
was used. The GLM model allowed the examinatiothefvariability of the fit index selection as
a function of the independent variables. The model® built with the criteria of discerning the
effects whose eta-squared values were at least @@ater. The effect size, eta-squargl (

was calculated to determine the proportion of \mlity associated with, or explained by each
effect. Using Cohen’s (1988) criteria for eta-sguhra small effect was describedhds .01; a
medium effect sizg”= .06; and a large effect as haviffg= .14 or greater. Each model initially
included only the main effects. Whether or not nmmplex parameters were added to the
model was based upon the amount of variability thatfirst model explained. Specifically, if
the model that contained only main effects expliasignificant proportion of the variability,
then neither two-way nor three-way interactionsenaided. However, if the fixed-effects only
model did not explain the minimum 94% of the vaitigh then two-way interactions were
included in the model. Finally, if the model sdid not explain 94% of the variability, then more
complex interactions were added to the model, sisdhree-way and four-way interactions until
at least the 94% of the variability had been exgdi If a medium effect was fourngf &= .086),
further follow-up analyses were conducted. A conguoer of the means were done using line
graphs to expound on the relationship betweeniffereht levels of that factor (e.g. number of
studies included in the meta-analysis) and theabdity of the outcome (e.g. AIC selected

models).
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Research Question Twe- Research Question Five

The remainder of the research questions was addtegwnilarly. The evaluation of the
outcome of interests and the parameter estimaiasttie three level model used to meta-
analyze single case data were addressed by exaniaxiand-whisker plots to illustrate the
distribution of the parameter estimates. Furtheemtr examine which design factors explained
the variability that was found among the paramegtimates, general linear modeling (GLM)
was used. The models were built with the critefidiscerning the effects whose eta-squared
values were at least .06 or greater. The effeet sim-squaredi?) were calculated to determine
the proportion of variability associated with, cipkained by each effect. Using Cohen’s (1988)
criteria for eta-squared, a small effect was descrias)’ = .01; a medium effect siag =.06;
and a large effect as havin§= .14 or greater. Each model only included mafaat§. Whether
or not more complex parameters were added to tlteehweas based on the amount of variability
that the first model explained. Specifically, ietimodel that contained only main effects
explained a significant proportion of the variatilithen neither two-way nor three-way
interactions were added. However, if the fixed-eeonly model did not explain the minimum
variability, then two-way interactions were incladi@ the model. Finally, if the model still did
not explain the minimum variability, then more cdexinteractions were added to the model,
such as three-way and four-way interactions undiilastantial amount of variability had been
explained. If a medium effect was foung €.06), further follow-up analyses were conducted. A
comparison of the means were done using line grepplspound on the relationship between the
different levels of that factor (e.g. number ofdias included in the meta-analysis) and the

variability of the outcome (e.g. confidence intdreaverage).
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Chapter Summary

This chapter outlined the methods for this studwek as described the purpose,
research questions, design, and simulation comditibhe data generation methods, analytical
procedures, and outcome measures have also besisshd. The goal of this chapter was not
only to illustrate and to build upon previous wdikat had been done with the use of meta-
analyzing single case research using the threé¢#eedel, but also to extend this work by
investigating various level-one error structurespeifications and the use of fit indices to
select the level one error structure. This Montddaork will not only guide methodologists,
but can also guide single-case researchers whemaatng intervention effectiveness in the

presence of correlated level-one error structures.
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CHAPTER FOUR: RESULTS

The chapter displays the results for the six resequestions in sequential order. The
chapter begins with a detailed description of hberesults were obtained. First, the accuracy
of the fit indices were examined. This is followagthe section that presents the outcomes of
interest (bias and RMSE, confidence interval cogerand width, and Type | error and power) as
related to the fixed effects, while the second padfsents similar outcome of interests (bias,
RMSE, confidence interval coverage and width) ¢ésted to the variance components. The
following research questions were addressed:

1. To what extent do fit indices (log likelihood ratest, AIC, adjusted AIC, and BIC)
correctly identify level-one covariance structureen using a three-level meta-analytic
single-case model?

2. To what extent are tHexed effectsparameter estimates from a three-level meta-
analytic single-case model biased as a functiaresign factors (number of primary
studies per meta-analysis, number of participaatgppmary study, series length per
primary study), data factors ( variances of thereterms, covariance structures), and
analysis factors (form of specification)?

3. To what extent areonfidence interval width and coverage for the fixé effectsfrom
a three-level meta-analytic single-case model &dtkas a function of design factors

(number of primary studies per meta-analysis, nurobparticipants per primary study,
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series length per primary study), data factorsi@wees of the error terms, covariance
structures), and analysis factors (form of speaifan)?

4. To what extent are thBype | error and power for the test of the fixed efectsfrom a
three-level meta-analytic single-case model afftetea function of design factors
(number of primary studies per meta-analysis, nurobparticipants per primary study,
series length per primary study), data factorsi@wees of the error terms, covariance
structures), and analysis factors (form of speaifan)?

5. To what extent are theariance componentparameter estimates from a three-level
meta-analytic single-case model biased as a fumcfiaesign factors (humber of
primary studies per meta-analysis, number of gpgrds per primary study, series
length per primary study), data factors (varianafethe error terms, and covariance
structures), and analysis factors (form of speaifan)?

6. To what extent areonfidence interval width and coverage for the vaance
componentsfrom a three-level meta-analytic single-case maffelcted as a function of
design factors (number of primary studies per nagialysis, number of participants per
primary study, series length per primary studyjadactors (variances of the error
terms, covariance structures), and analysis fa¢torn of specification)?

There were 1120 conditions simulated in this Mdbéelo study using the seven design factors.
These factors included the 1) the number of prinséudies per meta-analysis (10 and 30); 2)
the number of participants per primary study (4 &)d 3) the series length or number of
observations per participant (10 and 20); 4) vexes of the error terms (most of the variance at
level-one: §°=1; %, = 0.5, 0.05, 0.5, 0.05%,, = 0.5, 0.05, 0.5, 0.05] and most of the variarice a

higher levels: §*=1;%, = 2,0.2,2,0.2%, = 2, 0.2, 2,0.2]); 5) the level for the fixeffects (
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0 or [2 for the shift in level and .2 for the shiitslope]); 6) the level of autocorrelation ahd t
moving average parameter, respectively: [(0,3, 0), (.4,0), (.2, .2), (.4, .4)]; and 7) the form
of model specification [i.e. ID, AR(1), ARMA (1,1)and error structure selected by AIC, AICC,
BIC, and the LRT. Finally, this resulted in a 2x282x5x7 factorial design.

First, the extent to which each fit index couldreactly identify the covariance structure
was evaluated. This question involved analyzingpttogportion of times that each fit index
correctly selected the appropriate level-one esharcture. This was accomplished by first,
looking at the box plots which illustrated the disition of the correctly specified models across
the four fit indices. Then, GLM models were ruretglain the variability in the various
proportions for the fit indices, with the dependeattiable representing the correct proportion
and the independent variables were the designriactdahe study (the number of observations or
series length, the number of participants, the remobstudies to be included in the meta-
analysis, the variances of the error terms, thel lethe treatment effect, the level of the
autocorrelation and the moving average paramedatsthe type of fit index).

Next, the dependent variables or outcomes of istébeas, RMSE, confidence interval
coverage and width, type | error, and power) waeigyazed for the fixed effects and the
outcomes of interest (bias, RMSE, confidence irlecoverage and width) for the variance
components were evaluated. In order to compareutmmes of different sizes, the relative bias
was calculated for all of the outcomes where thrarpater value was not equal to 1.0. The
results of the study was then analyzed using PRQK2 {8 SAS to assess the relationship
between the independent variables or outcomegerfeist (bias, RMSE, confidence interval
coverage and width, type | error, and power) aeddigpendent variables or the design factors

for the simulation study (the number of primarydsés per meta-analysis, the number of
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participants per primary study, the series lermgthumber of observations per participant,
variances of the error terms, the level for thedixeffects, the level of autocorrelation and the
moving average parameter, and the form of modealisgation). In other words the outcomes of
interest were the dependent variables and the mésigors were modeled as the independent
variables.

These models were built with the intention of finglimedium effects or larger (whose
eta-squared values were equal to or greater tidnTBe effect size, the eta-squared valuéks (
was calculated to measure the degree of assoclagtwreen the dependent variable and the main
effects, or interactions, if necessary of the iredefent variables or the study’s design factors.
Eta-squared is the proportion of variability in thcome measure that is explained or
associated with each of the effects in the simutestudy. The formula is included below and

can be described as the ratio of the effect vaeigB8&s.c) to the total variance (%%)):

T]2= SSﬁect/ SSotal

The calculated®values were compared to Cohen’s (1988) standardstérpreting eta-squared
values with a small effect a8=.01; a medium effect ag = .06:and a large effect ag =.14 or
greater. Each model was first created using a retiécts only model. If this model did not
explain at least 94% of the total variability, th@gher order interactions (second-order
interactions were added, then third-order intecastj and so on) were included in the model
until at least 94% of the variability was explainetbwever, if the model explained at least 94%,
then it was known that no interaction effects wegeessary. If at least a medium effect was
found, then line graphs or a box plots were cretdddrther investigate the association between

the outcomes of interest and the study’s desigimfa.cAll of the samples converged.
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Overall Correct Fit Index Identification

The first question involved the accuracy of therfdices, specifically the proportion of
times that each fit index correctly identified dearect level-one error structure.

ID Model

The box plot below (see Figure 4) illustrates thepprtion of times that each fit index
correctly identified the correct error structurdyem the structure was the ID model. The largest
mean valueN! = 0.85,SD= 0.02), indicating that the ID model was corrgatlentified most
often by the log likelihood ratio test (LRT). Thenallest mean valueM = 0.67,SD= 0.03) for
the proportion of times that the ID model was ccityeselected was for the model selected by

the AIC fit index.
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Figure 4.Boxplot representing the distribution of proporticorrect for each fit index when the
model specified is the ID model.
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To further explore the variability in the proportiof times that each fit index correctly
identified the ID model, a GLM model was run acrtigsse seven design factors (series length,
number of participants in the study, number of pmynstudies included in the meta-analysis,
variances of the error terms, the level of thedirffects, and the type of fit index). The model,
including two-way interactions, which explained 99%the total variability revealed that the
interaction effect between the number of primawgss included in the meta-analysis and the
type of fit index §° = .064) used for model selection, met the aforgioeed criteria for having

at least a medium effect.
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Figure 5.Line graphs illustrating the mean proportion afés that the ID model was correctly
specified for each of the four fit indices.

Line graphs were then created to further examiaedhationship between the proportion
of times that the ID model was correctly selectéth the interaction effect including the number
of primary studies included in the meta-analysig #e fit index used for selection. Figure 5

shows that the when the number of primary studiésareased (from 10 to 30), then the
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proportion of the times that the ID model is cotiespecified is increased across all fit indices.
However, this increase is not identical acros$talhdices. More specifically, when the number
of studies is increased from 1@ & 0.69,SD= 0.02) to 30 = 0.81,SD= 0.04), the mean
increase in the proportion of times that the ID elad correctly selected is greatly improved by
the BIC fit index. The least mean increase forghaportion of times that the fit index correctly
selects the ID model is seen for the LRT. For tloelets selected by the LRT, when the number
of primary studies is 30 = 0.85,SD = 0.03), the mean proportion is slightly greakamn when
the number of primary studies included in the naetalysis is 10NM= 0.84,SD= 0.02).

First-order Autoregressive Model

The box plot in Figure 6 below depicts the promortof time that the various fit indices
correctly selected the first-order autoregresshi®(1), model. The AIC index had the least
mean proportion of correctly identifying the AR¢hpdel M = 0.80,SD= 0.06). The greatest
proportion for the correct selection of the AR(19ael was for the log likelihood ratio test, LRT,
M = 0.90,SD= 0.09. To further explore the variability obsetve the box plots, GLM models
were created.

The model, including three-way interactions ex@ai®8% of the total variability, and
affirmed three effects that were significant: teeias length or number of observations#
.10), the number of primary studies included inantmnalysisﬁ2 =.16), and the type of fit index
used for selectiom{ = .24). Furthermore, additional plots were theedu® further examine the
relationship of the mean proportion of correctlgntifying the AR(1) model with these other

effects.
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Figure 6.Boxplot representing the distribution of proporticorrect for each fit index when
the model specified is the AR model.

Figure 7 below shows the direct relationship betwibe proportion of time for selecting
the AR model correctly across the levels for sdeegth. Moreover, the graph depicts that the as
the series length increases from 10 to 20 thepiygortion for correctly identifying the AR
model also increases from a mean of 08D £ 0.10) to a mean of 0.8BD= 0.05). The
variability is also decreased with increased nuntb@bservations or a greater series length.

Next, the association between the mean proportfiaomectly selecting the AR(1)
model and the number of primary studies is depiotdegure 8 below. The means for the
proportion of correctly selecting the AR(1) modekhown above (see Figure 8, pg. 90) across

the levels for the number of primary studies tortmduded in the meta-analysis. The graph
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illustrates that as the number of studies increfises 10 M = 0.81,SD=0.10) to 30 (M = 0.87

, SD = 0.05), the proportion of times for corretntification of the AR(1) model also increases.
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Figure 7.Box plots illustrating the distribution for theqmortion of the AR model that was
correctly specified with series length.

Next, the association between the mean proportfiaomectly selecting the AR(1)
model and the number of primary studies is depiotdegure 8 below. The means for the
proportion of correctly selecting the AR(1) modekhown above (see Figure 8) across the levels

for the number of primary studies to be includethie meta-analysis. The graph illustrates that
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as the number of studies increases fromM G (0.81,SD=0.10) to 30 (M = 0.87 , SD = 0.05),

the proportion of times for correct identificatiohthe AR(1) model also increases.
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Figure 8.Box plots illustrating association of the meangaion of correctly selecting the AR
model and the number of primary studies includetthénmeta-analysis.

First-order Autoregressive Moving Average model

The distribution for the proportion of times thhetfirst-order autoregressive moving
average model, ARMA (1, 1) was correctly identifisdhown in Figure 9 below. The box plot
below illustrates the distribution of the mean pajn of times that the first-order

autoregressive moving average model was corredeiytified by the various fit indices.
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Although there appears to be some variability antbedit indices, none of the fit indices
correctly identified the ARMA model more than 20%lwe times. The greatest mean proportion
for correctly selecting the ARMA(1,1) model was mowhen the fit index used was the AKZ (
=0.19,SD= 0.02). The fit index with the smallest mean mjon times for correctly

identifying the ARMA(1,1) modelN] = 0.07,SD=0.12) was the LRT. To further explore the

variability, GLM models were run.
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Figure 9.Box plot illustrating the distribution of the meproportion of times that the first-order
autoregressive moving average model was corrediytified by the various fit indices.

The model, including two-way interactions, explair88% of the total variability, and
indicated that the interaction effect between thenber of primary studies to be included in the

meta-analysis and the type of fit index € .08) constituted a medium effect. The relatigmsh
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for the mean proportion of correctly identifyingetfirst-order autoregressive moving average
model and the interaction effect between the nurmabprimary studies to be included in the
meta-analysis and the type of fit index is depidigdhe line graph below (see Figure 10).

The graph shows that the effect of the number iofigny studies to be included in the
meta-analysis depends on the type of fit index sseelect the correct model. Specifically, as
the number of primary studies is increased fronfM& 0.17,SD= 0.03) to 301 = 0.08,SD =
0.02), the greatest decrease is observed for tiielnselected by BIC. As the number of primary
studies to be included in the meta-analysis issased from 10 (M= 0. 07, SD = 0.01) to 30 (M=

0. 06, SD = 0.01), the smallest impact is seeterlRT.
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Figure 1Q Line graph illustrating the association betwdenrhean proportion for correctly
selecting the ARMA (1,1) model and the interactdiect of between the number of primary
studies to be included in the meta-analysis andytbe of fit index.
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Fixed Effects

The second question referred to the bias and th8R&bssociated with the fixed effects
as a function of the seven factors used in thistel@arlo study. The third question described
the extent to which confidence interval coverage aidth of the fixed effects varied as a
function of the seven design factors. Furthermquestion four involved the degree to which
there was variability in the power and Type | ewbthe fixed effects as a function of the
study’s design factors. The percentage of non-cg@ree was not an issue in the study,
convergence rates were all 1.

Bias

The distribution of bias values for the fixed efféar the shift in level (phase) and the
interaction effect (shift in slopes) is shown igliie 11 and Figure 12 below, respectively.

Overall average treatment effect for the phase (shiiin level). The average bias values
were close to 0 across all seven models with littleo variation, the eta-squared value for the
type of model was .000099588. Specifically, therage bias was the smallest in magnitude (
=-.00001,SD=.0043) for the model selected by the log likedt ratio test (LRT) and largest
was for the first-order autoregressive moving agemnaodel, ARMA (1,1),N1 = -.00009,SD=
.0044). As indicated by the results above, therg htée to no variability across the models for
the average bias values. GLM models, including §-ingeractions, were run to see if any of the
design factors had a significant effect, but nomeesfound. Although the model explained 95%
of the variability, none of the effects met therafoentioned criteria for a medium effect. Due to
this finding, no further exploration was appropeieand the variability that was observed in the

bias values can be attributed to sampling error.
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Overall average treatment effect for the interaction effect (shift in slopes)Similar
results were found for the bias values in intecacgffect (shift in slopes). The distribution oéth
bias values is shown in Figure 12. The averageuahges were close to 0 across all seven

models with again, little to no variation.
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Figure 11.Box plots illustrating the distribution for thedsi values for the phase effect (shift in
level) across the 7 different models.

The type of modelf = .000017531) explained very little of the varlapiin the bias
values, again indicating similarity of the biasuesd across models. Specifically, the average bias
was the smallestM = -.000001250SD = .0017) for the LRT model. The first-order
autoregressive, AR(1), model had the largest aeebés valueNl = .000001250SD = 0.0016).
These values reveal very little to no bias presetite fixed effects. According to Hoogland and
Boomsma (1998), parameter estimates are acceptihleclative bias values less than five

percent. The bias values for the overall interacétiect are well below this criterion, therefore
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no further analyses was warranted. The bias ifitestr in the figure below can be attributed to

sampling error, and have minimal impact on the patar estimates.
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Figure 12.Box plots illustrating the distribution for thedsi values for the interaction effect
(shift in slopes) across the seven different models
Root Mean Square Error (RMSE)
The distribution of the RMSE values for each of ititervention effects (shift in level
and shift in slopes) is depicted across the sewvatheis in Figures 13 and 16, respectively.
Overall average treatment effect for phase (shifin level). The average RMSE value
for the treatment effect for phase (shift in leweds similar across the seven models; with the
type of model explaining very little of the varikityi (n° = .00004). This small eta-squared value

reinforced the noticeably small amount of varidbificross the seven models. The smallest
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RMSE mean value was for the first-order autoregvesnodel I = 0.32,SD=0.13). The

largest mean RMSE valub(= 0.32,SD = .13) for the phase effect was for the ID model.
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Figure 13.Box plots illustrating the distribution for the RO\ values for the phase (shift in
level) across the seven models.

To further explore the variability in the RMSE vesufor the phase effect, a GLM model
was created. The main effects only model explamext 96% of the variability and indicated
that two of the design factors had at least a rmaditfect, number of primary studies included in
the meta—analysisﬁ = .45) and the variances of the error tern?f§(.49). The box plots below

was used to represent the RMSE values as a funatitve number of primary studies included
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in the meta-analysis. As illustrated in the gragde(Figure 14), the RMSE values decreased

from a mean of 0.405D = .11) to a mean of 0.23D = 0.23) as the number of primary studies
included in the meta-analysis increased from 180toThere was also a noted difference in the
variability of the RMSE values for the shift in Evas the number of primary studies increased

from 10 to 30.
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Figure 14.Box plot depicting the estimated RMSE values i@ $hift in slopes as a function of
number of primary studies included in meta-analysis

Similarly, a box plot was created to further analylze relationship between the RMSE
values and the variances of the error terms. FigjGreelow represents the relationship,
moreover the figure portrays that as the variahdéssrom most of the variance for the error

terms at level-one to most of the variance at fijeu levels, the RMSE mean values increase
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from 0.23 ED=0.06 ) to 0.40D= 0.11). Note that the variance of the error tefonghe
residual variance was held constant at 1.0 acisdittons. Thus, the conditions that have most
of the variance shifted to the upper levels haveenatal variance. The variability in the RMSE
values for the shift in level also tended to deseeaith more variance in the upper levels as

opposed to more variance at level-one.
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Figure 15.Box plot depicting the estimated RMSE values lfiar $hift in level as a function of
the variances of the error terms.

Overall average treatment effect for slopes (shifih slopes).The distribution of the
RMSE values for the interaction effect is showrrigure 16 below. The distribution was very
similar across the seven modelé £ .00000), indicating little to no variability amss models for

the mean RMSE values. The smallest mean valie 0.10,SD = .042) for the first order
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autoregressive model (AR). The largest mean RM3ievean be observed for the ID moddl (

=0.10,SD = .042).
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Figure 16.Box plots illustrating the distribution for the RO\ values for the interaction effect
(shift in slopes) across the seven models.

Variation in the RMSE values were explored by modeRMSE values across the seven
design factors. The main effects only model ex@difi5.6% of the variability and revealed that
only two of the design factors had at least a nmed@éffect according to the aforementioned
criteria. The means for the interaction effecttfeer RMSE values as a function of the number of
primary studiesif® = .45) included in the meta-analysis are showFigure 17 below. As
depicted in the figure, as the number of primawgss increased from 10 to 30, then the RMSE

mean values decreased from 0.$3B € .04) to 0.08%$D= 0.02).
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Figure 17.Box plot depicting the estimated RMSE values i@ $hift in slopes as a function of
number of primary studies included in Meta-Analysis

The second factor that had at least a medium effastthe variance for the error terms
(n? = .45) in the main effects only model for the RM&#ues for the interaction effect (shift in
slopes). Figure 18 illustrates the relationshipeein the RMSE values and the variance for the
error terms. Specifically, as the variance in threreerms shifted from most of the variance
being at the level-one to most of the variance dpairthe upper levels, the RMSE mean values

increased from 0.0850 = 0.02) to 0.13%D= 0.04).
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Figgre 18.Box plot depicting the RMSE values for the shifsiopes as a function of the error
variances.

Confidence Interval Coverage

The distribution of confidence interval coveragesdor each of the fixed effects is
illustrated across the seven models in Figuresnti®?8 below.

Overall average treatment effect (shift in level)The mean confidence interval
coverage rate was comparable across the sevensr(sdelFigure 19 below), with means that
are very close to the nominal value of 0.95. Theetyf model+{* = .008) explained little to none
of the variability, which supported the small véina that was observed across models in the
box plots. The smallest mean confidence intervaécage was for the ID modé¥Wi(= 0.949,SD

= 0.003); the largest mean confidence interval caye M = 0.951,SD= 0.003) was observed
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for the LRT model. The range for the interval cags was 0.942 to 0.964, which falls within

Bradley’s (1978) criterion; therefore no furtheiafrses were warranted.
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Figure 19.Box plots illustrating the distribution of confidee interval coverage rates for the
phase effect (shift in level) across the severetkffit models.

Overall average treatment effect for slopes (shifn slopes).The average confidence

interval coverage rates for the interaction effecthe shift in slopes, were at the nominal level

of .95, ranging from a mean of .94800 = .0033) for the ID model and .953[) = .0036) for the

first-order autoregressive moving average modet fBmge for the interval coverage for the

interaction effect was 0.939 to 0.964; this raraks fwithin Bradley’s (1978) criterion for

acceptable coverage limits, therefore no furthatyaes was warranted in terms of explaining

the variability by the study’s design factors.
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Figure 20.Boxplots illustrating the distribution for the dadence interval coverage for the
interaction effect across the seven models.

Confidence Interval Width

The box plot depicting the distribution of the idence interval width estimates for the
two intervention effects (shift in level and shiftslopes) across the seven models are displayed
below in Figures 21 and 25, respectively.

Overall average treatment effect for phase (shifin level). The average confidence
interval width for the phase effect across the sewedels was comparable. The mean
confidence interval width was 1.3S[D = .58) for first-order autoregressive model aralftiur
fit-index selected models, however, for the ID mpddich had a slightly larger mean widtk (

=1.36,SD = .58). The largest mean confidence interval w{tMh= 2.51,SD = 3.48) was for the

103

www.manaraa.com



first order autoregressive moving average modeathEumore, the box plots reveal that there

may be some variability within each model.
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Figure 21. Boxplots to explore distribution of confidencedrval width for the phase effect
(shift in level) across all seven models.

GLM models were used to further investigate theadmality by modeling confidence
interval width as a function of the design factdrse model, including fourth-order interactions
explained 96% of the variability, however only faifects met the aforementioned criteria as a
medium effect: number of primary studies includednieta-analysisif= .10), the type of model

(n?= .08), the variances of the error term%=(.10), and the interaction between autocorrelation
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parameter and type of modef€ .16). Graphs were created to further explora¢ationship of

confidence interval width with each of the sigraint effects.
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Figure 22.Box plot illustrating the confidence interval whdfior the phase effect (shift in level)
as a function of the number of primary studiesuded in meta-analysis.

The first graph (see Figure 22 above) shows thatenumber of primary studies
included in the meta-analysis increased from 180tahen the mean confidence interval width
for the phase effect also decreased. Additiontily plots again depict that there is a decrease in
the variability of the interval coverage width thee phase effect (shift in level) when the number
of primary studies is increased from 10 to 30. Vaeability also tended to decrease for the

width of the phase effect when the number of prinsndies increased.
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Figure 23.Graph illustrating the mean confidence intervaltiifor the phase effect as a
function of the variances of the error terms.

The above graph in Figure 23 depicts the relatignisatween the mean confidence
interval width for the phase effect and the varemof the error terms. The box plot depicts that
as the variances of the error terms shifted frorstrobthe variance at level-one to most of the
variance of the error terms at the upper levelsntiean interval width increased from 0.8DE
0.31) to mean of 1.780= 0.53). However, there were also more outlyinois when most of
the variance shifted to the upper levels. Thus,nwhest of the variance shift from being at
level-one to most of the variance being at the uppeels (more total variance), then the mean

and variance tended to increase.
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Figure 24.Line graph depicting mean confidence interval wiaisha function of the interaction
effect between the type of model and the levehefautocorrelation parameter.

Lastly, the relationship for the interval widthaunction of both the type of model and
level of autocorrelation parameter was examinedguailine graph. Figure 24 above illustrates
that the confidence interval width is comparabless six of the seven models. However, the
first order autoregressive moving average, ARMAL)1 model seemed to be an anomaly.
Specifically, the mean confidence interval widtltdames smaller as the level of the
autocorrelation parameter increased,pfer0.0 M =5.76,SD=4.97),p=0.2 M = 2.02,SD=
3.34), anch = 0.4 M = 1.36,SD= 0.59).

Overall average treatment effect for the interactio (shift in slopes). The average
confidence interval width for the shift in slopes@ss the seven models was similar, except
again for the first order autoregressive movingage model. The mean confidence interval

width was 0.44%$D = 0.19) for the six models; however, the mean lagger for the ARMA
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(1,1) model M = 0.81,SD= 1.20). Furthermore, the box plots (see Figurb&lbw) reveal that

there may be some variability within each modettipalarly for the ARMA(1,1) model.
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Figure 25.Box plot illustrating the distribution for the disience interval width for the
interaction effect (shift in slopes) across theesemodels.

To further explore the variability in the mean adehce interval width for the interaction
effect, GLM models were run. The results of the eipohcluding 5-way interactions, explained
95% of the variability and revealed that there waree effects that constituted medium effects.
These effects were as follows: variances of theréerms 4°= .09), the number of primary

studies included in the meta-analysi$<.10), and the interaction of level of autocortiela
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parameter and the type of modgd< .11). The means for the confidence interval witta
function of each of these effects are displayetthénFigures 26, 27, and 28 respectively.

The relationship for the variances of the erromeand the mean confidence interval
width is illustrated in Figure 26 below. This retetship appears to be more direct, moreover, as
the variances of the error terms shifted from nobshe variance being at level-ond € 0.34,

SD= 0.26) to most of the variance appearing at hpeulevels ¥ = 0.64,SD= 0.62), the

mean confidence interval width increased.
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Figure 26.Box plot depicting relationship for confidencedntal width for the shift in slopes as
a function of the variances for the error terms.
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Figure 27.Box plot illustrating mean confidence interval widor the interaction effect as a
function of the number of primary studies includedneta-analysis.
The mean confidence interval width as a functibthe number of primary

studies included in the meta-analysis is depiatdeigure 27 above. The figure shows that there
is an inverse relationship, that as the numberiafigry studies increased then the mean
confidence interval width decreased. Specificall/the number of primary studies included in
the meta-analysis increased from 10 to 30, themtb@n confidence interval width decreased
from 0.65 6D = 0.62) to 0.34%D= 0.25).

Finally, the mean confidence interval width is désfed as a function of the interaction
effect between type of model and the level of thi@eorrelation parameter (see Figure 28

below). Similarly, the mean confidence interval thidbr the shift in slopes appeared
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comparable across all of the models, except fofitbieorder moving average parameter,
ARMA (1, 1). According to the graph, the mean cdafice interval width for the ARMA (1,1)
model tended to decrease as the level for the autdation parameter increased. Specifically,

forp=0.0 M = 1.71,SD= 1.55),p = 0.2 M = 0.71,SD= 1.35), andp = 0.4 M = 0.45 SD=

0.20).
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Figure 28.Line graph illustrates the mean confidence infemdth for the shifts in slope as a
function of the interaction effect between typeraidel and level of autocorrelation parameter.

Type | Error
The box plot depicting the distribution of the Tylperror rates for the two intervention
effects (shift in level and shift in slopes) acrdss seven models are displayed below in Figures
29 and 30, respectively.
Overall average treatment effect for phase (shiftn level). The average type |

error for the phase effect across the seven mededssimilar, the smallest mean Type | error
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was for the ARMA modelNl = 0.049,SD = 0.003), while the largest mean Type | error Yeas
the LRT model 1 = 0.050,SD= 0.003). The means were comparable across madétsthe
type of model{?= 0.008236), explaining very little of the totalriability. Additionally, the
range, 0.04 to 0.06 for the Type I error falls witBradley’'s (1978) criterion. Therefore, no

further analyses were warranted.
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Figure 29. The distribution for the Type | error for the phafect (shift in level) across the
seven models.
Overall average treatment effect for the interactio effect (shift in slopes).The
distribution for the Type | Error for the interamti effect is displayed in Figure 30 below. The
average type | error for the interaction effecbasrthe seven models was comparable, the

largest mean Type | error for the LRT moddl £ .050,SD = .004), conversely the smallest
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mean Type | error for the ARMA(1,1) moddll = .049,SD= .004). Again, the means were
comparable across models, with the type of magfet 0.027), explaining very little of the total
variability. Additionally, the range [0.036, 0.05@} the Type | error falls within Bradley’'s

(1978) criterion; therefore, no further exploratiwas necessary.

0.060 4
=2 8 8 8 8
0.055 5
O
e
LLI
S5 <
g 0.050 & L% & & W
@ (&)
=
[uk]
=
=
= 0.045 4
E i .
L] o o o o
@ o
= o o o o o o
0.040
]
o o ] ]
8]
0.035
ID AR ARMA LRT AIC AICC BIC

Type of Models

Figure 30.Box plots showing the distribution of the Typeriag for the interaction effect (shift
in slopes) for across the seven models.

Power for the Test of Fixed Effects
The box plot depicting the distribution of the pavestimates for the two intervention
effects (shift in level and shift in slopes) acrtss seven models are displayed below in Figures

31 and 33 respectively.
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Overall average treatment effect for phase (shiftn level). The distribution for the
power estimates for the phase effect across thensewdels was comparable. The smallest
mean power estimates was for the ARMA modi#H0.982,SD= 0.032), conversely, the
largest mean power estimate was for the AR mddet 0.983,SD= 0.031). The eta-squareqf (

=.00015) for the type of model supports the s@abunt of variability among the seven

models.
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Figure 31.Box plots displaying the distribution for the pavestimates for the phase effect
across the seven models.

To further explore the variability, GLM models, lnding two-way interactions were

used, this model explained 97% of the total valitgbiAdditionally, the model revealed that the
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interaction effect between the number of primanges and the variance of the error terms met
the aforementioned criteria for being a mediumafta?= .30). Line graphs were then used to

analyze the relationship between this effect aedilean power estimates.

1.0 can

0.981

Error Variances

Mean Power Estimates
¢

Figure 32.Line graphs illustrating the relationship betwele@ thean power estimates and the
interaction effect of the variances of the erromtg and the number of primary studies included
in the meta-analysis.

The line graphs above (see Figure 32) depictshieatnean power estimate is dependent
upon both factors. For the cases when the erréaneas are mostly at the level-one, the effect
on the power estimates does not depend on the mwhpemary studies included in the meta-
analysis. However, when most of the error variamresat the upper levels, then when the

number of primary studies shifts from 10 to 30 tktlemean power estimates increase fkdm

0.93,SD=0.02 toM = 0.99,SD= 0.0008.
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Overall average treatment effect for the interactio (shift in slopes). The average
power estimate for the interaction effect (shifsiopes) across the seven modefs (00002)

was comparable.
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Figure 33.Box plots displaying the distribution for the povestimates for the interaction effect
across the seven models.

To further examine the variability in the poweriesttes for the interaction effect, GLM
models were created. The main effects only modglaéxed 96% of the total variability,
revealing two factors that met the criteria forigeconsidered at least a medium effect: the
variances of the error terms’(= .42) and the number of primary studies includethe meta-
analysis §°= .51). The power estimates as a function of eéthese factors are presented in

Figures 34 and 35 below.
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The power estimates as a function of the errolanaes are displayed below (see Figure
34). The power estimates decrease as the variahtles error terms are shifted from most of the
variance at level-one[ = 0.71 ,SD= 0.24) to most of the variance appearing at thgeulevels

(M =0.36 ,SD=0.17).

——
0.8 4
& &
L
2 064 _—
[
m
@
»
=
B 0.4 5
w <O
= P B
]
o
0.2+
0.0 5
Most at Level-one Most at Upper Levels

“ariances of the Error Terms

Figure 34.Box plots illustrating the relationship between thean power estimates for the
interaction effect and the variances of the eoms.

The power estimates as a function of the numberiofary studies reveal that there is a
direct relationship between the two parametershasiumber of primary studies increase from
10 to 30, then the power estimates increased framan of .34%D= 0.17) to a mean of .73

(SD=0.21).
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Figure 35.Box plots illustrating the relationship between thean power estimates and the
number of primary studies included in the meta-sisl
Variance Components

Questions five and six were similar to questioms and three, except that the variance
components were analyzed instead of the fixed esff&pecifically, question five examined the
bias and RMSE associated with the variance comgsm@asma function of the seven factors used
in this Monte Carlo study. The final question désed the degree to which the confidence
interval coverage and width for the variance congmbs varied as a function of the seven design

factors.
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Relative Bias

The distribution of relative bias values for theiaace components for the shift in level
(phase) and the interaction effect (shift in slgpgshown in Figure 36 and Figure 38 below.
Relative bias was used for variables whose valiezs wther than 1.0, but did not have levels
that included 0. This enabled comparisons to beenaadoss the different values of that variable.
For example the levels for the variances of theréarms were 0.5 and 2.0. This simply
involved dividing the bias estimates by the paramealue.

Level-three variance for the overall average treatrant effect for the phase (shift in
level). The average relative bias values were close todsa all of the models (the ID model
and the first-order autoregressive moving averagdat). For the remainder of the models, the
mean bias for the level-three variance componeatssimilar, the eta-squared for the type of
model = .007, further indicating that there wattdivariability among the type of model.
Specifically, the average bias was the smalldst 0.02,SD = 0.02) for the ID model and
largest was for the first-order autoregressive mgwaverage modeM = 3.33,SD=19.73). To
further examine the variability of the bias for tkgel-three phase variance, GLM models were
run. The model, including 5-way interactions, wane to see if any of the design factors had a
significant effect, but none was found. Althougk thodel explained 95% of the variability,
none of the effects met the aforementioned criterna medium effect. Due to this finding, no
further exploration was appropriate.

Due to the large amount of variability found in thias estimates, the data were trimmed
to produce plots where the distribution of the lnathe level-three phase effect can be examined

for the design factors. Figure 37 below shows tkg&iution of the trimmed data, further
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analysis was conducted to see if there were anyumedr larger effects. The results of these

additional analyses are explicated in Appendix A.
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Figure 36 Box plots showing the distribution of the bias tioe level-three shift in level (phase
effect) across the seven models.
Level-three variance for the overall average treatrant effect for the interaction
effect (shift in slopes).The average relative bias values were close tw the first-order
autoregressive moving average modl={0.007,SD= 0.02). The relative bias mean estimate
for the ID model was 0.350 = 3.49). For the remainder of the models, the nieas for the
level-three variance components was comparablesttisquared for the type of model was

.007, further indicating that there was little admility among the type of model.
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Figure 37 The box plot illustrating the trimmed distributiof the relative bias for the phase
effect (shift in slopes) across the seven models.

To further examine the variability of the bias the level-three phase effect, GLM
models were run. The model, including 5-way intBoas, explained 94% of the total
variability, however none of the design factors hadedium effect)?> .0588. Due to this
finding, no further exploration was warranted oe dniginal data. However, the data were
trimmed for further analysis which is explaineddetail below and in Appendix A.

Due to the large amount of variability found in thias estimates, the data were trimmed
to produce plots where the distribution of the liathe level-three interaction effect can be
examined for the design factors. Figure 39 beloawnshthe distribution of the trimmed data for

the level-three interaction effect for the shiftsiopes, further analysis was conducted to see if
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there were any medium or larger effects on the tyahe study’s design factors

. The results of

these additional analyses are thoroughly preseartddexplained in Appendix A .
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Figure 38 Box plots showing the distribution of the untrimdhbias for the level-three
interaction effect (shift in slopes) across theesemodels.

The box plots indicate that the means are simiesss the seven modelg€.007),

suggesting that the type of models did not expdasignificant portion of the variability. GLM

models were run to further examine the variabdityong the variance components.

Furthermore, the model, including five-way interas explained 94% of the total variability.

However, none of the factors led to medium effeaidicating that the observed variability can

be attributed to sampling error; and no furthelyses was necessary.
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Figure 32 The distribution for the trimmed level-three \aante for the overall average treatment
effect for the interaction (shift in slopes).

Level-two variance for the average treatment effedior the phase (shift in level).The

distribution for the level-two variance componefuisthe overall average treatment effect for

phase is displayed in Figure 40 below on page 123.

After trimming the data, which is displayed belawHigure 41, the box plots illustrate

this distribution of the trimmed relative bias vadufor the level-two variance for the phase effect

(shift in level) across the seven models. To furthelore the effect of the design factors and the

combination of the design factors, GLM models wrene
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Figure 40.Box plot depicting the distribution for the lew@lo variance for the phase effect
(shift in level) across the seven models.

The findings, (including the graphs) and explamegitor the GLM model for this design
factor is presented in greater detail in AppendixThe results revealed one medium or larger
effect: the interaction of the level of autocortigla and the type of modeh¥ 0.22).

Line graphs were then produced to further investigiais relationship and found that the
trimmed relative bias for the level two variance ttee phase effect (shifts in level) was
comparable across all of the models as the levisleohutocorrelation increased However, for

the ID model, the mean relative bias tended tosimsed greatly as the level of autocorrelation

increased.
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Figure 41.Box plot representing the trimmed distribution floe level-two phase effect (shift in
slopes) bias across the seven models.

Level-two variance for the overall average treatmeneffect for the interaction (shift
in slopes). The distribution illustrating the distribution ftire bias for the level-two variance
components for the interaction effect is displayeBigure 42 below. The plots reveal that the
means across the modelg € .007) are similar. The largest mean for relakises was observed
for the first-order autoregressive model € 8.32,SD = 44.89) and the smallest mean was for

the ID modelM = 0.64,SD = 3.45.
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To further explore the variability, GLM models wete. The model, including five-way

interactions explained 93% of the total variabikiyd revealed no substantial effects. Therefore,

no further analyses were necessary on the origiaal.
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Figure 42 Box plots illustrating the distribution for thevel-two variance component for the

interaction effect (shift in slopes) across theesemodels.

Due to the extreme variability noted in the graghe,data were trimmed so that the

relative bias could be further investigated. The plots below (see Figure 43) show the

distribution of the trimmed data. Further analysese run to further examine the relationship
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with the trimmed data and the design factors (#seilts of the additional analyses can be found

in Appendix A).
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_Figure 43 The distribution of the trimmed relative bias tbe level-two variance for the
interaction.

Level-one or Residual VarianceThe distribution for the level-one or residual aace
is displayed in Figure 44 below across the sevedatso The plots revealed that there is
variability across models in the mean bias forlével-one variance. The largest mean bias
estimate is observed for the first-order autoregjvesmoving average modé¥i(= 0.20,SD =
0.15), conversely, the smallest mean bias estimaeen for the ID modeM = -0.08,SD=
0.06). To further explore the variability in theabiestimates, GLM models were run. The model,

including 5-way interactions, explained 94% of tb&l variability, and revealed the following
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medium effect: the interaction between the levahefautocorrelation parameter and the type of

model ¢° = .08).

Bias

8
N 2 &5 = & &= &
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Type of Models

Figure 44 Box plots illustrating the distribution for thevel-one variance (residual variance)
across the seven models.

Line graphs were then created to examine the oglship between the bias in the level-
one variance and the interaction effect betweenetied of autocorrelation and the type of
model. Figure 45 below illustrates this relatiopsliepicting that the effect of the level of the
autocorrelation parameter on the level-one biamasts depends on the type of model.
Moreover, as the level of the autocorrelation pat@mincreased, the bias increased for five of

the models (the AR models and the models selegt&ath of the four fit indices). This
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correlation was similar for the ID model, but iretimverse direction. Specifically, as the level of
the autocorrelation increased, then the bias iseckéor the ID model, but in the negative
direction. Lastly, the ARMA model had the leastddiiar the level-one variance wherr 0.2,

then the mean bias increased when0.4, and then largest for when the autocor@ati

parameter was 0.
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Figure 45 Line graph illustrating the mean bias in the lemge variance (residual variance) and
the interaction effect of the level of the autoetation parameter and the type of model.

Autocorrelation Parameter. The box plot (see Figure 46 below) depicting the
distribution of the bias for the autocorrelatiomgraeter across all of the models, except for the
ID model (where the autocorrelation parameter vetisnated to be 0). As observed in the Figure
46, the means for the bias of the autocorrelatamameter varied across all models. The smallest

mean bias for the autocorrelation parameter wasroed for the AR modeM = -0.0007SD=
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0.002), the largest mean bias was observed fdir8teorder autoregressive moving average,

ARMA (1,1), model ¥ = -0.03,SD= 0.08).
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Figure 46.Box plot depicting the distribution of the biag fbe autocorrelation parameter across
the six models.

To further examine the variability, GLM models weus. The model, including three-
way interactions explained 94% of the total vatigibi The results of the model indicated that
the three-way interaction among the variances®gtinor terms, the level of the autocorrelation
parameter, and the type of modqﬂ € 0.12) met the aforestated criteria for beingealimm
effect. Line graphs were then created to furth@tae the relationship of the means for the

autocorrelation parameter across this interactifece
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In Figure 47 below, the means for the bias of tne@orrelation parameter across the six
models for when most of the variance is at the uppels is displayed. The mean bias for the
autocorrelation parameter was minimal across fiMb® models across all levels of the
autocorrelation parameter. The variability in theam bias was greater for the ARMA (1,1)
model across the various levels of the autocoroglggarameter. For this model, the bias was
minimal, M = -0.0004,SD= 0.006, when the autocorrelation parameter wasThe bias then
increased as the autocorrelation parameter inatdes® 0.0 M = -0.007,SD= 0.002) to 0.2M
=-0.01,SD=0.02) for the ARMA (1,1) model. The relationslspvery similar for when most of
the variance is at level-one, however the meanibigeeater in the negative direction when the
autocorrelation parameter is equal to O.

First-Order Autoregressive Moving Average Parameter The distribution of the bias
for the moving average parameter is displayed gufé 48 below. The means across the five
models (the moving average parameter was estinbateel zero for both the ID and the AR
models) varied. As illustrated by the figure, thean bias for the moving average parameter is
smallest for the models selected by the AIC and@ @ = -0.067,SD= 0.154). The mean bias
is largest for the first-order autoregressive mgwawverage modeM = 0.16,SD= 0.15.

To further examine the variability in the bias loétmoving average parameter, GLM
models were run. The main-effects only model exigdi94% of the total variability and
revealed that there were two significant mediurecf: the type of modeh{= 0.27) and the
level of the moving average parametgr=< 0.61). Graphs were then created to represent the
relationship between the mean bias for the mowvregaage parameter and each of the effects.

The relationship between the mean bias of the ngoauerage parameter and the level of

the moving average parameter is depicted belowHgpee 49). The graph shows that as the

131

www.manaraa.com



level of moving average parameter increased frah{N.= 0.08,SD=0.11) to 0.2 =-0.12,

SD=0.08) to 0.4 =-0.27,SD= 0.14), the mean bias also increased for the mgoaverage

parameter.
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Figure 47.Line graphs illustrating the means for the relalup of the bias in the
autocorrelation parameter and the three-way intieraamong the variances of the error terms,
the level of the autocorrelation parameter, andype of models.
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Figure 48.Box plots showing the distribution for the biagmoving average parameter estimate

across the five models.

Root Mean Square Error (RMSE)

The distribution of the RMSE values for the variemomponents for the shift in level (phase)

and the interaction effect (shift in slopes) iswhon Figure 50 and Figure 52 respectively.
Level-three variance for the overall average treatrant effect for the phase (shift in

level). The box plot in Figure 50 below illustrates thstdbution of the RMSE values for the

level-three variance for the phase effect acrosséven models. The smallest mean RMSE

value was observed for the ARMA(1,1) moddl £ 0.64,SD= 0.40), however the largest mean

RMSE value was noted for the AR(1) moddl £ 382.79SD = 3098.68).
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Figure 49.Box plot representing the relationship betweemtiean bias for the moving average
parameter and the level of the moving average patierm

GLM models were run to further explore the varigygithe model, including five-way
interactions explained 94% of the total variabilidowever, no considerable effects were found,
therefore no further exploration was warrantedliits data.

The data were trimmed to allow for further explaratof the RMSE values for the level-
three variance for the phase effect. The distributif the trimmed data is displayed in Figure 51.
GLM models were run with the trimmed data and #wults are further explained in Appendix
A. Overall, the GLM models (including two-way iné&tions) explained 99% of the variability
and revealed one medium or larger effect: the &teon of the number of primary studies with

the variances of the error termg< 0.06). This interaction was further investigated the
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relationship was represented with line graphs. liifeegraphs depicted the interaction of the
number of primary studies and the variance of ther éerms with the trimmed RMSE values

values for the level-three variance for the shiftavel.

Further examination of the interaction with the RBM&lues illustrated that for the less
number of primary studies(10), the RMSE values terge greater than when the number of
primary studies increased to 30, however the gapes greater when the variances of the error

terms is mostly at the upper levels.
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Figure 50.The distribution of the RMSE values for the phaect for level-three variance
across the seven models.
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Figure 51 The distribution for the trimmed RMSE values tloe level-three variance for the
phase effect.

Level-three variance for the overall average treatrant effect for the interaction
effect (shift in slopes).The box plot illustrating the distribution for tRMSE values for the
level-three variance for the interaction effeaflisplayed below in Figure 52. The means appear
to be comparable across five of the models (thelARjodel and each of the four fit index
selected models). However, the mean RMSE valuthé&oiD model was 2.060 = 22.42) and
the RMSE was smallest for the ARMA modkl € 0.07,SD= 0.04). To further explore the
variability in the RMSE values for the level-thregriance for the interaction effect, GLM

models were run. The model, including five-way iatgions, explained 93% of the total
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variability and none of the effects constituted edmm effect. Due to this, no further

exploration was warranted for the original data.
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Figure 52.The distribution of the RMSE values for the lettalee variance for the interaction
effect (shift in slopes) across the seven models.

The RMSE values were then trimmed for further asialpf the RMSE values as a
function of the seven models. The distributiontfa trimmed RMSE values is displayed in
Figure 53 below. GLM models were run to furtherastigate the relationship of the RMSE
values with the study’s design factors. The conchssfor the models were explained in

Appendix A.
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Figure 53.The distribution for the trimmed RMSE values foe tevel-three variance for the
interaction effect.

Level-two variance for the average treatment effedtor the phase (shift in level).The
distribution for the level-two variance componentt the phase effect is shown directly below in
Figure 54. The means appear to be similar, witttythe of model+{? = .011), indicating little
variability between the types of modélhe greatest mean for the RMSE was observed for the
model selected by LRTM = 295.32,SD= 1350.36), meanwhile the smallest mean RMSE value
was noted for the AR(1) modeWi(= 0.40,SD = 0.21). To further examine the variability, GLM
models, including 5-way interactions were run. m#icant or medium effects were found, no

further analyses are warranted.
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The RMSE values were then trimmed for further asialpf the RMSE values as a
function of the seven models. The distributiontfe trimmed RMSE values is displayed in
Figure 55. GLM models were run to further investigtne relationship of the RMSE values with
the study’s design factors. The findings for thedele are explained with greater detail in
Appendix A. In summary, the model, including thowtler interactions, explained 95.9% of the
variability. There were three medium or larger efife number of participantaZ(: 0.12), number

of studies to be included in the meta-analysfs 0.22), the variance of the error term&

0.43).
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Figure 54.Box plot illustrating the distribution of the RMSklues for the level-two variance
components for the phase effect across the sevdelmo
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Figure 55 The box plot illustrating the distribution forehrimmed RMSE values for the level-
two phase effect.

Level-two variance for the overall average treatmet effect for the interaction (shift
in slopey. The distribution for the level-two variance coonents for the shifts in slopes is
displayed in the box plot below (see Figure 56) Tdrgest mean was observed for the model
selected by the LRTM = 12.77,SD = 54.84), conversely, the smallest mean was ®AIR
model M = 0.07,SD= 0.04). The type of modef{ = 0.017), indicating a menial amount of
variability between the type of models. GLM modekse run to further analyze the variability.
The model, including five-way interactions explair@/% of the total variability. None of the

effects met the criteria for a medium, therefordurther exploration was warranted.
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Figure 56.Box plot illustrating the distribution of the RMSHElues for the level-two variance
components for the interaction effect across thersenodels.

The data were then trimmed to further investighgMariability in level-two variance for
the interaction effect; the graph for the trimmestribution is displayed below in Figure 57. The
graph shows that the means are comparable acradfitbe models, with the ID model having
a slightly larger mean. The greatest variabilitysva¢éso observed for the ID models, and againk
similar variability was noticed for the remaindéitioe models. GLM models were then run to
determine if there were any medium or larger effeceach of the design factors and
combinations of these factors. The results arespted and explained in great detail in the

Appendix A.
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Figure 57 The distribution for the trimmed RMSE values tioe level-two variance for the

interaction effect.

Level-one or Residual VarianceFigure 58 below displays the distribution of the &

values for the level-one variance across the senvaels. The largest mean RMSE value was

observed for the model selected by the AR mddet, 11.97,SD= 129.02, conversely, the

smallest mean was for the ID modkl € 0.10,SD = 0.05). The type of modet{= 0.017),

indicating a menial amount of variability betweée type of models. GLM models were run to

further analyze the variability. The model, incloglifive-way interactions explained 97% of the

total variability. None of the effects met the erit for at least a medium effect; therefore no

further exploration was warranted on the origiretiad
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Figure 58.Box plot showing the distribution of the RMSE vadifer the level-one variance
across the seven models.

Due to the extreme variability observed in sevpaahts for the RMSE values for the
level-one variance, the data were trimmed and ai& goints were removed. The resulting
distribution of the trimmed RMSE values for thedewne variance is displayed below in Figure
59. The figure displays that the mean RMSE val@®d across the different types of models.
The largest mean RMSE valudd € 0.36,SD = 0.29) for the level-one variance was observed
for ARMA (1,1) model, while the smallest mean RM&Hues M = 0.10,SD= 0.06) was noted
for the ID model. To further explore the varialyilgf the trimmed RMSE values for the level-
one variance, GLM models were used. The findingsanther explicated in the Appendix A.

Overall, The resulting model included 3-way intéi@ts and explained 98% of the total
variability. The following medium effects were fadirthe series length or number of

observationsi? = 0.06), the interaction of the level of the autoetation parameter and the type
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of model §?=0.07), the interaction of the variances of the erromeand the type of mode{

= 0.11).
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Figure 59.Box plot showing the distribution of the trimmeMBE values for the level-one
variance across the seven models.

Autocorrelation Parameter. The box plot below (see Figure 60 below) illustsaiee
distribution of the RMSE values for the autocortiela parameter across the six models (the
autocorrelation parameter was estimated to be th&ltD model). The plots indicated that the
smallest mean for the RMSE values for the autotadrom parameter is for the first-order
autoregressive modé@¥l = 0.05,SD = 0.02), while the largest mean for the RMSE valwas

observed for the moving average modiél£ 0.33,SD= 0.24). To further explore the variability
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in the RMSE values for the autocorrelation param&&M models were run. The models,
which included two-way interactions, explained 98fthe total variability. The model revealed
that there was one effect that met the aforemeadi@niteria for a medium effect: the interaction

of type of model and the level of the autocorrelagpparametemf = 0.28).
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Figure 60.Box plot showing the distribution for the RMSE wes$ for the autocorrelation
parameter across the six models.

To further examine the significant effect, line gjna (see Figure 61 below) were created
for the relationship of the RMSE values for theogotrelation parameter and the interaction
effect between the level of the autocorrelatiorapsater and type of model. The line graph
indicated that RMSE values were similar for the glsdelected by three of the fit indices (AIC,
AICC, and BIC) across the various levels of theaatrelation parameter. For the models

selected by the LRT, the RMSE values were slightiyller, and smallest for the AR(1) model
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across the various levels of the autocorrelaticamater. The largest RMSE values were
observed for the ARMA(1,1) model with a mean of)(&D = 0.08) forp = 0.4, mean of 0.30

(SD=0.13) forp = 0.2, and finally, mean of 0.7SD= 0.07) forp = 0.0.
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Figure 61.Line graph depicting the relationship betweenrntean RMSE values for the

autocorrelation parameter and the interaction etfetype of model and the level of the
autocorrelation parameter.

First-Order Autoregressive Moving Average Parameter The box plot displayed
below in Figure 62 depicts the distribution of REISE values for the moving average
parameter across the five models (the moving aegpagameter was estimated as zero for the
ID and the AR models). The smallest mean for theSEMalues were observed for the LRT
models M = 0.16,SD = 0.13) and the largest mean for the RMSE valugs far the
ARMA(1,1) model M = 0.21,SD= 0.14). GLM models were run to further explore th

variability of the RMSE values, and their relatibipswith the combination of design factors.
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The model, including two-way interactions explair®d®so of the total variability, and revealed
that there were two significant (medium or largefgcts: the level of the autocorrelation
parameterr(zz 0.26) and the interaction between the level efrtftoving average parameter and
the type of modehf: 0.45). Line graphs were then created to furtikarmene the relationship

of these effects with the RMSE values for the mg\amerage parameter.
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Figure 62.Box plot illustrating the distributon or tne Kivisklues for the moving average
parameter across the five models.

Line graphs were then created to explore the aasociof the mean for the RMSE
values and these effects. Figure 63 below dephetsalationship between the mean RMSE
values and the interaction between the level ofiibging average parameter and the type of

model. The graph shows that for the models seldnydtie various fit indices that the mean
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RMSE values increase as the level of the movingamesparameter increase. However, the
inverse relationship was observed for the ARMA(Iynbdel, the mean RMSE values increased
as the level of the moving average decreased. fiadlgi, the mean RMSE value was smallest

for6 =0.4 M =0.07,SD=0.04) and largest fé&r= 0.0 M = 0.30,SD=0.11).
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Figure 63.Line graphs for the association of the mean RM8&lHes for the moving average
parameter and the interaction between level ofribeing average parameter and the type of
model.
Confidence Interval Coverage

The confidence interval coverage will be explomethie next section for all of the
variance components. These components includdévbEthree variance for both the phase
effect (shift in level) and the interaction efféshift in slopes), the level-two variance for both

the both the phase effect (shift in level) andithieraction effect (shift in slopes), the level-one

or residual variance, the autocorrelation paramatet finally, the moving average parameter.
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Figure 64.Box plots for the distribution of the coverage floe level-three variance for the phase
effect (shift in levels) across the seven models.

Level-three variance for the overall average treatrant effect for the phase (shift in
level). Figure 64 above shows the distribution for thefictence interval coverage for the level-
three variance for the phase effect across thenseeglels. The means for the confidence
interval coverage appear to be comparatile=(0.007), further indicating the lack of variatyli
across the seven models. The largest mean waseonadel selected by LRM(= 0.9556,SD

=0.011) and the ID model had the smallest meamvat coverageM = 0.9528 SD = 0.014).

To further examine the variability in the confideriaterval coverage, GLM models were
run. The model, including two-way interactions, kped 95% of the total variability, and

indicated that two combinations of design factoesemmedium effects: the number of primary
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studies included in the meta-analysis< .07) and the interaction effect between the nurbe
participants and the variances of the error tefhs (09).

Box plots (see Figure 65 and 66) were then cretatedplore the relationship with each
of these medium effects with the outcome of inteaesl the confidence interval coverage for the
level-three variance for the shift in level. FinstFigure 65, the graph illustrates the relatiopsh
between the mean interval coverage and the nuniilpgineary studies to be included in the
meta-analysis, revealing that as the number ofgmatudies to be included in the meta-
analysis increased from 1BI(= .95,SD= 0.013) to 301 = 0.96,SD = 0.008), the mean

confidence interval coverage also increased.
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Figure 65.Box plot depicting the relationship between theameonfidence interval coverage
for level-three variance for the phase effect dredrtumber of primary studies to be included in
the meta-analysis.
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The association of the interval coverage and ttexaction of the variances of the error
terms and the number of participants in each stuaiythen illustrated in Figure 66 below. The
graph indicates that the effect of the number ofigpants (from 4 to 8) on the mean interval
coverage is dependent upon the variances of tbetermms. Specifically, when most variances
of the error terms are at the upper levels forsti# in level then there is only a slight increase
in mean as the number of participants shift frofM4= 0.96,SD = 0.004) to 8¢ = 0.96,SD =
0.003). However, there is a greater increase immnéan interval coverage when the most of the
variances of the errors are at level-one for theesspleffect as the number of participants shift

from 4 M = 0.94,SD= 0.010) to 8} = 0.96,SD = 0.006).
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Figure 66 Line graph illustrating the relationship betweke mean confidence interval
coverage for the level-three variance for the pledfget and the interaction between the
variances of the error terms and the number ofgiaants in study.
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Level-three variance for the overall average treatrant effect for the interaction

effect (shift in slopes).The distribution for the confidence interval coage for the level-three

variance for the interaction effect is shown inl¥&g67 below. The figure shows that the

variability across the models are minimui% .014). The largest mean interval coverage was

for the model selected by the BIC fit indeM € 0.952,SD = 0.020); the smallest mean interval

coverage was for the ID modéll (= 0.944,SD = 0.028). To further explore the variability ireth

mean interval coverage, GLM models were run.
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Figure 67.Box plot showing the distribution of the confideno&erval coverage for the level-
three variance for the interaction effect (shifslapes) across the seven models.

The results of the model including two-way interaes, explained 95% of the total

variability, reported two effects that met the afmentioned criteria for being described as a
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medium effect. One of the effects was the inteoactiffect between the series length and the
variances of the error termg’€ .11). The other medium effect was the numberanfigipants

in the study{®= .14). Line graphs were then constructed to furihestrate the relationship
between the mean interval coverage and these &ffBué graph below (see Figure 68)
represents the relationship between the mean alteoverage and the interaction between the
series length and the variances of the error tefiaghermore, the lines illustrate that the effect
or the impact of the series length on the meanidenée interval coverage depends on the
variances of the error terms. Specifically, the@ase in the mean confidence interval coverage
is greater when the series length is increases 1@ifv = 0.92,SD= 0.025) to 20N = 0.96,SD

= 0.007) when most of the variance is at level-oGenversely, when most of the variance is at
the upper levels, the effect of the series lengtihgasing from 10M = 0.954,SD= 0.010) to 20

(M =0.963,SD= 0.005) on the mean interval coverage is minimal.
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Figure 68.Line graphs depicting the relationship betweemtiean interval coverage for the
level-three variance of the interaction effect fisini slopes) and the interaction of the variances
of the error terms and the series length.
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Figure 69 illustrates the relationship of the oatecof interest with the second medium
effect, specifically, the relationship between thean confidence interval coverage for the level-
three variance for the interaction effect and theber of participants included in a primary
study. The graph reveals that as the number oicpaatts increased from #(= 0.94,SD =

0.025) to 8 M = 0.96,SD= 0.011), then the mean confidence interval wal#o increases.
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Figure 69.Box plot depicting the association between the nietmval coverage for the level-
three variance for the interaction effect (shifslapes) and the number of participants in a
particular study.
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Level-two variance for the average treatment effédor the phase (shift in level).The
distribution of the confidence interval coveragetfee level-two variance for the phase effect

(shift in level) in shown in Figure 70 below.
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Figure 70.Box plots showing the distribution of the confiderinterval coverage for the level-
two phase effect (shift in level) across the savwexlels.

The box plot above illustrates the distributiortteé confidence interval coverage for the
level-two phase effect across the seven modelssifadlest mean interval coverage was
observed for the ID modeM = 0.71,SD = 0.25), conversely, the largest mean intervakcage
was seen for the first order autoregressive mosiregage modeM = 0.94,SD=0.19). To

further examine the variability in the interval evage, GLM models were run.
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The results of the model, including three-way iatgions, explained 99% of the total
variability and resulted in the following factorsibg medium effects: the interaction between
type of model and the variances of the error tefifhs= .08) and the interaction between the type

of model and the level of the autocorrelation parteng? = .22).
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Figure 71.Line graphs illustrating the mean interval coveréy the level-two variance for the
phase effect as a function of the interaction betwthe variances of the error terms and the type
of model.

Line graphs were then created to further analyeedtationship of the mean interval
coverage with these effects. The graph above (ggrd-71) displays that the association of the
mean interval coverage with type of model depemdthe variances of the error terms,
specifically, the graph shows that the for the IDd®l when the most of the variance is at level-

one, the mean interval width is much lower £ 0.60,SD = 0.28) than for the other modeM &

0.93,SD=0.017). However, this difference is much smdiberthe ID model 1 = 0.83,SD=
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0.13) and the other models (M = 0.957, SD = 0.0@4g@n most of the variance is at the upper
levels.

Furthermore, the line graph (see Figure 72) belepials the association of the level-two
variance with the phase effect and the interadietween the level of the autocorrelation
parameter and type of model. The graph below rtes that for the ID model the effect on the
mean interval coverage depends on the level cdtib@correlation parameter. Moreover, the
figure illustrates that as the autocorrelation pater is decreased from OM € 0.52,SD =
0.26) to 0.2 = 0.79,SD=0.12) to 0.0 = 0.95,SD= 0.01), then the mean interval coverage
increases for the ID model. The mean interval cagemwas near the nominal value of 0.95 for

the six remaining models.
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Figure 72.Line graphs representing the association betwe=mean interval coverage and the
interaction between the level of the autocorretaparameter and the type of model.
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Level-two variance for the overall average treatmeneffect for the interaction (shift
in slopes).The box plots illustrating the distribution of tbenfidence interval coverage for the
level-two variance for the interaction effect (slif slopes) is displayed in the Figure 73 below.
The interval coverage seemed to be comparablesaalomodels, with the exception of the ID
model. The mean interval coverage for the ID moded 0.72 $D = 0.24) which was lower than
the mean interval coverage for the remainder ohtbdels M = 0.94,SD= 0.03). To further
explore the variability of the interval coveragd,Nbmodels were run. The results of the model
(including three-way interactions) explained 99%laf total variability. The model resulted in
one medium effect, the interaction between thelleWthe autocorrelation parameter and the

type of modeh§? = .22).
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Figure 73.Box plots depicting the distribution of the corditte interval coverage for the level-
two variance for the interaction effect (shift iloes) across the seven models.
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The graph (see Figure 74) was then constructedgrtioer analyze the association
between the mean interval coverage and the interalbetween the level of the autocorrelation
parameter and the type of model. The figure belepvasents that for the ID model, the effect on
the mean interval coverage rely on the level ofatcorrelation parameter. Specifically, for
the ID model the mean interval coverage is muctetowhen the autocorrelation parameter is
0.4 M =0.53,SD= 0.25) and then the mean interval coverage appesathe nominal value of
0.95 and the autocorrelation parameter approachBsedremaining six models all have interval

coverage that was close to the nominal value @&.0.9
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Figure 74.Line graph illustrating the relationship betweka tean interval coverage and the
interaction effect of the level of the autocorrglatparameter and the type of model.
Level-one or Residual VarianceThe confidence interval coverage for the level-one

variance or the residual variance was then analyeel smallest interval coveragd € 0.56,

SD=0.32) was observed for the ID model, meanwhigel#ingest mean interval coverage was
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noted for the first order autoregressive movingrage model, ARMA(1,1)Nl = 0.70,SD=

0.27). The variability in the mean interval covggavas then explored using GLM models.
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Figure 75.The distribution of the confidence interval coyggdor the level-one variance across
the seven models.

The models, including three-way interactions reeédhat there were three medium

effects: the number of primary studies to be inetlith the meta-analysig= 0.06), the

interaction of the series length and the type ofleh¢,?= 0.07), and lastly, the level of the

autocorrelation parametef’(= 0.53). Box plots were then created to furthemeine the

association of these effects with the mean intezgakrage for the level-one variance (residual

variance).
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The graph below (see Figure 76) shows that asuhebar of primary studies to be
included in the meta-analysis increased fromMG=(0.74,SD= 0.23) to 301 = 0.59,SD=

0.34), then the mean interval coverage for thelleme variance decreased.
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Figure 76.Box plots illustrating the relationship betweer thean interval coverage and the
number of primary studies to be included in theareetalysis.

The graph in Figure 77 below displays the assaradf the mean interval coverage for
the level-one variance with the interaction of tyyge of model and the series length.

Specifically, the graph illustrates that the effetthe series length on the mean interval
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coverage depends on the type of model. The mearvaitwidth is decreased for most of the
models (AR, ARMA, LRT, AIC, AICC, BIC) when the ses length is increased from 10 to 30.
However, the opposite is observed for the ID mothe:mean interval coverage is increased

when the series length is increased fromMG=(0.43,SD= 0.35) to 30 = 0.69,SD= 0.21).
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Figure 77 Line graphs depicting the relationship betwee&aminterval coverage for the
residual variance and the interaction of seriegtleand the type of model.

Finally, the graph of the level of the autocornelatparameter and the mean interval
coverage is displayed below. The graph (see Fig8yelepicts that the mean interval coverage
for the residual variance decreased as the levblechutocorrelation parameter increased from
0.0 (M = 0.91,SD= 0.06) to 0.2 = 0.81,SD= 0.14) to 0.4N! = 0.40,SD= 0.29). The amount
of variance for the interval coverage for the raaidsariance also increased as the level of

autocorrelation increased.
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Figure 78.Box plots depicting the relationship between theaminterval coverage for the
residual variance and the level of the autocorm@igtarameter.

Autocorrelation parameter. Box plots (see Figure 79) illustrating the disttiba of the
confidence interval coverage for the autocorrefaparameter across the six models (the
autocorrelation parameter was estimated as 0 éoiiimodel).. The smallest mean interval
coverage was noted for the model selected by tke(Ml= 0.86,SD = 0.06) and the largest
mean interval coverage was for the AR(1) modkH0.95,SD = 0.005). The variability was
further examined with the use of GLM models. Thedelpincluding three-way interactions
explained 96% of the total variability. The modkslcarevealed one significant effect: the

interaction of the level of the autocorrelationgraeter and the type of modef € 0.32). Line
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graphs were then created to further examine theced®on of the mean interval coverage with

this effect.
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Figure 79.Box plot displaying distribution of the confidenicéerval coverage for the
autocorrelation parameter across the six models.

The association between mean interval coveragéautocorrelation parameter and
the interaction of the level of the autocorrelagarameter and the type of model is depicted in
the line graph below (see Figure 80). The graplcatds that the relationship across the models
selected by the fit indices are comparable, thantlean interval coverage is greatest when

0.0 and least whem= 0.2. The last model, the ARMA (1,1) model, ithages that the mean
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interval coverage increases as the level of thecauntelation parameter increases from G0

0.60,SD=0.12) to 0.21 = 0.86 SD= 0.07) to 0.4} = 0.92,SD = 0.04).
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Figure 80.Line graph depicting the association between ni@anval coverage for the
autocorrelation parameter and the interaction efi¢lrel of autocorrelation parameter and the
type of model.

First-Order Autoregressive Moving Average Parameter The mean confidence
interval coverage was then examined for the mosawerage parameter across the five models
(the parameter was estimated to be zero for bethDtand the AR models) in Figure 81. The
largest mean interval coverage was observed fomthaels selected by LR™M(= 0.59,SD=
0.45), conversely, the smallest mean interval cayemas noted for the ARMA(1,1) mod# (

= 0.54,SD= 0.41). The variability was further explored ws@LM models. The model,

including two-way interactions, explained over 98%&he total variability, and revealed two
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medium effects: the level of the autocorrelatiorapaeter = 0.18) and the interaction

between the level of the moving average parametgttze type of modehf = 0.54).
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Figure 81.Box plots illustrating the distribution of the caaénce interval coverage for the
moving average parameter across the five models.

Graphs were then constructed to analyze the mddhes mterval coverage for the
moving average parameter across both of the stgmifieffects. First, the graph (see Figure 82)
shows that the mean coverage for the moving averageneter decreases as the level of
autocorrelation increases from OM € 0.91,SD= 0.08) to 0.2 = 0.49,SD= 0.40) to 0.4M
=0.48,SD= 0.41). The variability is increased greatly las autocorrelation increases for 0.0 to
0.2 but remains the approximately the same asuteearrelation is further increased from 0.2 to

0.4.
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Figure 82.Box plots illustrating the mean interval coverdgethe moving average parameter
across the levels of the autocorrelation parameter.

Additionally, the association of the mean intersaverage for the moving average
parameter and the interaction of the level of tlowimy average parameter and the type of model
are depicted in the line graph below (see Figuje 8B8alyzing the graph below, there is little
difference in the mean coverage for the moving ayeiparameter across all of the five models
as the level of the moving average parameter reased from 0.2 to 0.4. Additionally, the mean
coverage is really low for the models selectedh®yfit indices (this again can be attributed to
the few number of times that the fit indices cotiseentified the first order autoregressive

moving average model). However, for the ARMA (Inigdel, the mean coverage was high
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when the moving average parameter was at leagM)=20.89,SD = 0.06). Lastly, when the
moving average parameter was 0 (ID model), themtban coverage was lowest for the ARMA

(1,1) model M = 0.30,SD= 0.36) and highest for the LRT selected modéls=(0.96,SD =

0.02).

. / \A/>‘<

o < o<

o)

©

g

S8 Level of Moving Average

B 05l = 0.0

= < 04

8

= 2 P

—

0.04 ‘ ‘ ‘ ‘
ARMA LRT AIC AICC BIC

Type of Model

Figure 83.Line graphs depicting the association of the metaival coverage for the moving
average parameter and the interaction of the typeodel and the level of the moving average
parameter.
Confidence Interval Width

The interval width for the four level-three angléétwo variance components were so
large, that they provided no valuable informatiSpecifically, the smallest mean interval width
estimates for the level-three variance componanmtthe phase effect, shift in level, was for the

ID model, 7.08 X 1€**and largest for the model selected by the BIC, X 26°** For the level-

three variance components for the level-three auteon effect (shifts in slopes), the smallest
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mean interval width was observed for the AR moB&3 X 1G° and smallest mean interval
width was noted for the model selected by the AIGZ6 X 16%. Similar patterns were
observed for the level-two variance componentstHferphase effect, the smallest mean interval
width was seen for the ID model, 6.89 X*¥nd the largest mean interval width was for the
model selected by LRT, 1.97 X 40. Finally, when analyzing the means for the leves-
variance for the interaction effect, the shift iopes, and the smallest mean interval width was
noted again for the ID model, 1.17 X*¥0and the largest mean interval width was obserged f
the ARMA model, 1.53 X 18",

Level-one or Residual VarianceThe distribution for the confidence interval widdr
the level-one variance for two of the models (forand for the AR model); the remaining
models had widths that were too large to gain aegmmgful information for the level-one
variance (residual variance). Therefore, the othedels were removed from the picture to allow
for an accurate examination of the ID and the ARleho

The mean interval width for the ID mod® & 0.17,SD= 0.07) was smaller than for the
AR model M = 0.34,SD= 0.25) for the level-one varianc&LM models were run to further
examine the variability in the interval width fdret residual variance across the design factors
and the combination of these design factors. Taédah including three-way interactions,
explained 95% of the total variability, and revekdleat there were four medium effects: the
number of participants per study’ & 0.06), the interaction of the autocorrelatiorgpaeter and
the type of modelf = 0.08), the number of primary studies to be idelliin the meta-analysis
(n2 = 0.14), and the series length or number of oladiens (12 = 0.15). Graphs were then
created to further examine these effects and taitionship with the outcome of interest (mean

interval width).
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Figure 84.Box plot illustrating the distribution for the dwtence interval width for the level-
one residual variance across the seven models.

Figure 85 below displays the relationship betwi#enmean interval width for the level-
one variance and the number of participants iudystThe graph shows that as the number of
participants increased in a study fromMi£ 0.31,SD= 0.24) to 8 1=0.21,SD= 0.13), then the
mean interval width for the level-one variance alsweased. In terms of the variability, the box
plot also revealed that the variance tended toa@mo decrease as the number of participants to

be included in each study increased from 4 to 8.
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Figure 85.Box plots illustrating the association of the maaerval width for the level-one
variance and the number of participants in a paercstudy.

Next, the relationship between the mean intervdtlwand the interaction of the level of
the autocorrelation parameter and the type of misddisplayed in Figure 86 below. The graph
shows that the effect of the level of the autodatien parameter on the mean interval width
depends on the type of model. Specifically, whentstipe of model is ID, the level of
autocorrelation has very little effect on the me#arval width for the level-one variance.
However, for the AR (1) model, the mean confideimnéerval width for the level-one variance
increases as the level of the autocorrelation par@nincreases from the model not having any

autocorrelation to the highest level of autocotrera
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Figure 86.Line graph displaying the relationship of the medarval width for the level-one
variance and the interaction of the level of theearrelation parameter and the type of model.

Additionally, the association of the mean intemwadth for the residual variance with the
number of studies to be included in the meta-amalyas further analyzed using graphs (see
Figure 87 below). The graph indicates that as thaber of primary studies to be included in the
meta-analysis increased from M £ 0.33,SD=0.24) to 30 = 0.18,SD= 0.11), then the
mean interval width for the residual variance alsoreased. The variability also tended to
decrease as the number of primary studies incrdes®dl0 to 30.

Lastly, the association of the mean interval wifdththe residual variance and the
number of observations or the series length walyze The graph in Figure 88 below
illustrated that as the series length increasead t6 (M = 0.34,SD=0.18) to 20 = 0.18,SD
= 0.08), then the mean interval width for the raaldvariance decreased. The descriptive

statistics also revealed that the variability tehttedecrease with the increased series length.

172

www.manaraa.com



2.04

a
(]
=
=
5 157 .
E 6
—1
=]
=
= 1.0
=
=
= )
E a
3 ° °
o -
2 051 o
€ o
[}
%
0.0+
T T
10 30

Mumber of Primary Studies

Figure 87.Box plots depicting the relationship between treaminterval width for the level-
one variance and the number of primary studiesided in the meta-analysis.

Confidence Interval Width for Level-one “ariance

2.0 4

0.5

0.0 1

Series Length

Figure 88.Box plot illustrating the relationship between thean interval width for the
level-one variance and the series length.
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Figure 89.The box plot representing the distribution for whierval width for the
autocorrelation parameter across the six models.

Autocorrelation Parameter. The distribution for the interval width for the
autocorrelation parameter is shown above in Fig9reThe box plot shows that the means for
the interval width are different among the mod#is, ARMA (1, 1) model has the largest mean
interval width M = 0.96,SD = 0.59) and the model selected by the LRT hasnmalest mean
interval width M = 0.16,SD= 0.10). To further explore the variability in threean interval
width, GLM models were run across the design factor

The model, including two-way interactions, explairg8% of the total variability and

resulted in one medium effect, the interactionubaorrelation parameter and the type of model
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(n2 = 0.31). Line graphs were then constructed tdh&rrexamine the relationship of the mean
interval width and the interaction effect. The lgraph below displays that the effect of the level
of the autocorrelation parameter depend on the aypeodel. Specifically, for the first order
autoregressive moving average model, the mearvaiteidth for the autocorrelation parameter

is much greater than for the remainder of the nsdel
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Figure 90.Line graph depicting the estimated mean intervdtiwof the autocorrelation
parameter as a function of the interaction betvikerlevel of the autocorrelation parameter
and the type of model.

Moreover, the mean interval width decreases foARR®IA (1,1) model when the level
of the autocorrelation parameter increases fron{\d.6 1.92,SD= 0.39) to 2.0 = 0.89,SD =
0.31) to 4.0 = 0.54.SD = 0.24). For the autocorrelation model, the mederval width
slightly increases as the level of the autoconalgparameter increases from OM<0.17,SD =

0.08) to 4.0 = 0.20,SD= 0.10). When looking at the fit-selected modeigrall the mean

interval width is comparable, resulting in mearemal widths of less than 0.10 when the level
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of the autocorrelation parameter was 0.0 and ise@tto approximately 0.24 when the
autocorrelation parameter increased to 0.2 or 0.4

First-Order Autoregressive Moving Average Paramete The distribution for the
mean confidence interval width for the moving agerparameter across the five models are
displayed in Figure 89 below. The box plots illastrthat the means for the four models selected
by fit indices were comparable with the largest mima the model selected by the AW E
0.04,SD= 0.02) and smallest for the model selected by &€ (M = 0.01,SD= 0.01).
However, the first-order autoregressive moving agermodel was the greatest among the five

models with a mean of 8.38D = 20.00). To further examine the variability, Glivbdels were

run.
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Figure 91.Box plots illustrating the distribution of the datence interval width estimates for
the moving average parameter across the five models

176

www.manaraa.com



The resulting model, including five-way interactsm@explained 96% of the total
variability and resulted in one medium effect, iteraction of the level of the autocorrelation
parameter and type of modaF E 0.28). Line graphs were then created to furtx@amine the

association of the mean interval width for the nmgvaverage parameter with this effect.
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Figure 92.Line graphs illustrating the association of mederival width for the moving
parameter and the interaction of the level of t@eorrelation parameter and the type of model.
The line graph above (see Figure 92) demonstratdéghie models selected by the fit
indices had comparable mean interval widths fomtlo®ing average parameter across all levels
of the autocorrelation parameter (this should berpreted with caution again due to the few
number of times that these models correctly idetithe ARMA model). However, for the
ARMA(1,1) model, there were great differences ia thean interval widths as the level of the
autocorrelation parameter increased from M0=(33.22,SD= 27.18) to 0.4N1 = 0.25,SD=

0.13).
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The distribution for the proportion of times thaetARMA (1,1) model was correctly
identified was examined. The results revealedrbat of the fit indices correctly selected the
model more than 20% of the times. The results ialdicated that the greatest mean proportion
of times was for the AIC, meanwhile the LRT had shaallest proportion of correct
identification for this model. The association lo¢ tmean proportion of times that the ARMA
model was correctly identified by the fit indicasdathe interaction effect of the type of fit index
and the number of primary studies to be includetthénmeta-analysis was then explored. The
results indicated that the effect of the numbguraghary studies on the mean proportion of
correct identification depended on the type of nhdlolet was used. Concretely, for the BIC fit
index, the greatest decrease in the correct ideatibn was seen when the number of primary
studies increased. However, there was hardly difgreince for the models selected by the LRT

in the mean proportion of correct selection whenrthmber of primary studies increased.
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Table 6
Summary of Results for Correct Model Selection

ID
M = 0.74;
Range: [0.82, 0.91].

The models selected by the BIC fit
index showed the greatest
improvement when the number of
primary studies included in meta-
analysis increased.

AR(1)
M = 0.84; Range: [0.52, 0.95].

The proportion of times that the AR
(1) model was correctly identified
increased with increased series
length and the number of primary
studies to be included in the meta-
analysis increased.

The LRT fit index greatly
outperformed the other fit indices
in terms of correct identification for
the simpler models, ID and AR(1).

ARMA(1,1)
M = 0.14; Range: [0.05, 0.24].

None of the fit indices correctly
selected the model more than 25%
of the time; the greatest proportion
of times was found for the AIC fit
index, while the least was for the
LRT.

For the BIC fit index, there was an
increase in correct identification
when the number of studies to be
included in the meta-analysis
increased.
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Table 7

Summary of Results for the Fixed Effects

Parameter
Estimate
Shift in Level

Bias
M=
0.00001;Range: [-
0.0147, -0.0140].

No medium or
larger effects were
found.

RMSE
M= 0.32
Range: [0.15,
0.55]

Tended to
decrease with
increased
number of
primary studies
and as most of
the variance
shifted to most
of the variance at
level-one.

Interval
Coverage Interval Width Type | Error Power
M = 0.95; M =1.52; M = 0.05; M = 0.98;
Range: [0.94, Range: [0.60, Range: [0.04, Range: [0.89,
0.97]. 22.17]. 0.06]. 1.0].
Mean Power
Tended to Tended to Approached the estimates were
approach the decrease with  target value comparable
nominal value of increased level- across the across the
0.95 across all  three sample sizemodels (M = models (M =

design factors. and most of the 0.05) for all of  0.98).
variance at level- the combinations

one. of design factors. When most of
the variance is at
For the the upper levels,
ARMA(1,1) mean power
model, the width estimates
becomes smaller increase with an
as the level of increase in level-
autocorrelation three sample
parameter size.
increased.
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Table 7 (continued)
Summary of Results for the Fixed Effects

Parameter

Estimate Bias RMSE

Shiftin Slope M = 8.304X10; M= 0.10;
Range: [-0.006, Range: [0.04,
0.006]. 0.19].

No medium or

larger effects were Tended to
found. decrease with

increased

number of

primary studies
and as most of
the variance
shifted to most
of the variance at
level 1.

Interval
Coverage

M = 0.95;
Range: [0.94,
0.96].

Tended to
approach the
nominal value of
0.95 across all
design factors.
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decrease with
increased level-
three sample size  across the
and most of the models (M =
variance at level- 0.05) for all of
one.

For the
ARMA(1,1)
model, the width
becomes smaller
as the level of
autocorrelation
parameter
increased.

www.manaraa.com

the combinations
of design factors. Tended to

Interval Width Type | Error  Power

M = 0.49; M = 0.05; M = 0.53;
Range: [0.18, Range: [0.04, Range: [0.15,
8.38]. 0.06]. 0.99].

Tended to The mean type | The mean power

error approachedestimate (M =
the target value 0.53) was

approximately
equivalent across
the models.

increase as the
number of
primary studies
increased and
most of the
variance is at
level-one.



Table 8

Summary of Results for Variance Components

Relative Bias RMSE Interval Coverage Interval Widt
Level-three
Shift in Level M = 2.21, Range: M =101.87, M = 0.96, =
[-0.023, 228.76] Range: [0.172, Range: [0.91, 3.72x16%,
6183.13]. 0.97]. Range: [0.8616

No medium or to 4.03x16°9.
larger effects No medium or Tended to
were found. larger effects overcover No medium or

were found.
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when most of
the variance is
at upper levels,

but approached

nominal value
with increased
level-three
sample size.

The impact of
the level-two
sample size
was minimal
when most of
the variance is
at the upper
levels.
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larger effects
were found.



Table 8 (Continued)

Summary of Results for Variance Components

Relative Bias RMSE Interval Coverage Interval Widt
Shift in Slope M = 3.23, Range: M =9.243, M = 0.95, M=
[-0.020, 368.73)]. Range:[0.0157, Range: [0.85, 1.68x1G%
No medium or 400.754] 0.98]. Range:[0.0755,
larger effects 4.03x10%9.
were discovered. No medium or Tended to
larger effects overcover, No medium or

were found.

however this
was magnified
in the cases
where the most
of the variances
was at the
upper levels
and series
length was
long.

larger effects
were found.
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Table 8 (Continued)

Summary of Results for Variance Components

Relative Bias RMSE Interval Coverage Interval Widt
Level-two
Shift in Level M = 3.61, Range: M =211.98, M =0.91, M=
[-0.03, 258.29]. Range: [0.12, Range: [0.02, 1.64X10%,
14034.3]. 0.97]. Range:[0.5204,
No medium or 1.24x10%

larger effects
were found.

No medium or
larger effects
were found.
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The coverage
was close to 0
for the ID
model for some
instances when
there was at
least a
moderate
amount of
autocorrelation.

The level of
autocorrelation
did not have as
great of an
impact on the
other models.
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No medium or
larger effects
were found.



Table 8 (Continued)

Summary of Results for Variance Components

Relative Bias RMSE Interval Coverage Interval Width
Shift in Slope M = 4.87, Range: M= M = 0.91, Range: M=

[-0.08, 419.24]. 9.24,Range: [0.05, 0.97]. 5.68X1G%
[0.0157, Range: [0.03,

No medium or 400.75]. The coverage was 9.34x1G%.

larger effects very low, close to

were found. No medium 0, for the ID model No medium or
or larger when the level of larger effects

effects were
found.

autocorrelation
was the greatest.

were found.
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Table 8 (Continued)

Summary of Results for Variance Components

Bias

RMSE

Interval Coverage

Interval Width

Level-1

Residual
Variance

M = 0.0109, Range: [-
0.204, 3.23].

Tended to be
overestimated for all
of the models except
for the ID model
(underestimated).

As the level of the
autocorrelation
increased, then the
bias tended to increase
for all models with the
exception of the
ARMA(1,1) model.

For the ARMA(1,1)
model, the level-one
variance estimate
tended to be most bias
when there was no
correlation in level-
one.

M = 0.22 Range
[0.02, 1.19]

The RMSE values
decreased with an
increase in the
level-one sample
size and total
variance.

The RMSE values
tended to increase
for the simpler
models with
increased
autocorrelation.
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M = 0.66 Range
[0.00, 0.96].

Tended to
undercover, and this
was magnified to
even lower coverage
with increased level-
three sample size
and level of
autocorrelation.

Interval coverage
was improved for
longer series length
for only the ID
model.
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M = 9.86x16%
Range: [0.084,
1.69x16%4.

Widths decreased or
became more narrow
as the sample size for
each level increased.
For the AR(1) model,
the interval widths
decreased with
increased level of
autocorrelation.



Table 8 (Continued)

Summary of Results for Variance Components

Autocorrelation
parameter

Bias

M =-0.007, Range:
[-0.2591, 0.1633].

Tended to be

minimal when most
of the variance was
at the upper levels.

Tended to be
underestimated by
all of the models
when most of the
variance was at
level. This was
magnified for the
ARMA(1,1) model.

RMSE

M =-0.17, Range:
[0.02, 0.84].

The level of
autocorrelation did
not impact the
AR(1) model and
the LRT model.

However, the
RMSE value
tended to
decreased with
increased level of
autocorrelation.
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Interval Coverage

M = 0.89, Range:
[0.42, 0.96].

For the AR(1)
model, coverage
approached
nominal value;

For the fit-selected
models, tended to
approach nominal
value when there
was no
autocorrelation;

For the ARMA
(1,1) model,
approached
nominal value with
increased level of
autocorrelation.
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Interval Width

M = 0.32; Range:
[0.008, 2.52].

For the correctly
specified AR(1)
model, the interval
widths were not
impacted across the
design factors.

For the fit selected
models, the widths
tended to get wider
for increased level
of autocorrelation.

For the
ARMA(1,1) model,
the widths were
narrowest for the
highest levels of
autocorrelation.



CHAPTER FIVE: DISCUSSION

This chapter outlines a summary of the study asdltg along with a discussion of the findings,
limitations of the study, and implications for fuduresearch.
Summary of the study

Purpose

The purpose of the study was two-fold: 1) to deteenthe extent to which the various fit
indices can correctly identify the level-one comage structure; and 2) to investigate the effect
of various forms of misspecification of the leveleoerror structure when using a three-level
meta-analytic single-case model.

Research Questions

1. To what extent do fit indices (log likelihood ratiest, AIC, AIC corrected, BIC)
correctly identify level-one covariance structureen using a three-level meta-analytic
single-case model?

2. To what extent are tHexed effect parameter estimates from a three-level meta-dnalyt
single-case model biased as a function of desigpoifa (number of primary studies per
meta-analysis, number of participants per priméugg series length per primary study),
data factors ( variances of the error terms, cavae structures, level of treatment
effect), and analysis factors (form of specificaji®

3. To what extent areonfidence interval width and coverage for the fixd effectsfrom a

three-level meta-analytic single-case model affitatea function of design factors
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(number of primary studies per meta-analysis, nurobparticipants per primary study,
series length per primary study), data factorsi@vees of the error terms, covariance
structures, level of treatment effect), and analfactors (form of specification)?

4. To what extent are thBype | error and power for the test of the fixed efectsfrom a
three-level meta-analytic single-case model affitetea function of design factors
(number of primary studies per meta-analysis, nurobparticipants per primary study,
series length per primary study), data factorsigvees of the error terms, covariance
structures, level of treatment effect), and analfactors (form of specification)?

5. To what extent are theariance componentparameter estimates from a three-level meta-
analytic single-case model biased as a functiaresign factors (number of primary
studies per meta-analysis, number of participaatgpmary study, series length per
primary study), data factors (variances of thereeoms, covariance structures, level of
treatment effect), and analysis factors (form a@fcsfication)?

6. To what extent areonfidence interval width and coverage for the vaance
componentsfrom a three-level meta-analytic single-case maffelcted as a function of
design factors (number of primary studies per nagi@lysis, number of participants per
primary study, series length per primary studyjadactors (variances of the error terms,
covariance structures, level of treatment effexnty analysis factors (form of
specification)?

Method

Monte Carlo simulation methods were used to addresaforementioned research

guestions. Multiple design, data, and analysiofacivere manipulated in the study. The study

used a 2x2x2x2x2x5x7 factorial design. Seven erpartal variables were manipulated in this
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study. 1) The number of primary studies per metyais (10 and 30); 2) The number of
participants per primary study (4 and 8); 3)Thaesdength per participant (10 and 20);
4)Variances of the error terms (most of the vamgaaiclevel-one:d’=1;%, = 0.5, 0.05, 0.5, 0.05;
¥, = 0.5, 0.05, 0.5, 0.05] and most of the variartd@@upper levelsof=1:%, = 2, 0.2, 2, 0.2;
T, = 2,0.2,2,0.2]); 5) Levels for the treatmefiects[shift in level: 0 and 2.0; shift in slopes
[0 and 0.2]; 6) the level of autocorrelation ane thoving average parameter, respectively:
[(0,0), (.2, 0), (.4,0), (.2, .2), (.4, .4)]; amd The form of model specification [i.e. ID, AR(1),
ARMA (1,1)], and error structure selected by LRTCAAICC, and the BIC. For each of the 96
data and design conditions, 5000 simulated dasavgste generated using SAS IML (SAS
Institute, Inc., 2008). These data sets were tpenied using the a priori model selection of the
level-one error structure and the use of fit cidtépost hoc model selection) of the level-one
error structure.

This study first examined the proportion of timeatteach fit index correctly selected the
appropriate model. Secondly, this study examinedrégmatment effects (i.e., the overall average
treatment effect and the overall average differdreteveen baseline and treatment slope) and the
variance components (e.g., the between-personnastioidy variance in the average treatment
effect, the between-person within-study variancthenaverage difference between baseline and
treatment slope, the between-study variance iloteeall average treatment effect, and the
between-study variance in the average differentedsn the baseline and the treatment slopes)

in a multi-level model.

190

www.manaraa.com



Discussion of Study Results

Correct Model Selection

Results indicated that the proportion of times thatID model was correctly identified
was greatest for the models selected by the LRTlesasd for the models selected by the AIC.
The variability was then explored by running GLM ahets to identify medium or larger effects.
The model revealed that the interaction effechefriumber of primary studies included in the
meta-analysis and the type of fit index had an ichpa the proportion of times that the ID
model was correctly selected. The relationshipakcethat the proportion of times that the ID
model was correctly specified increased when thebar of primary studies included in the
meta-analysis increased. However, this increasenatslentical across all models; specifically,
the improvement was greatest for the BIC fit indexl least for the models selected by the LRT.
Past research suggested that the BIC had betfermpance with increased sample size (Raftery,
1995), and given that that the SAS PROC MIXED ukeshnumber of independent sampling
units as the sample size, and in this case, thiddvmply the number of studies used in the
meta-analysis. That could be why the noted incebpseformance with the BIC fit index when
the number of studies in the meta-analysis (indépenhsampling units) increased.

The proportion of times that the AR (1) model wagectly identified was then explored
and revealed that on average the AR (1) model wasdaly selected most often by the LRT,
and the least often by the AIC fit index. The tesaf the GLM models then found that there
were three medium or larger effects: the seriegtlerthe number of studies to be included in the
meta-analysis, and the type of fit index that wsedufor selection. When using the three-level
model, all of the fit indices correctly identifi¢kle AR (1) model at least 80% of the time.

Specifically, the relationship revealed that asséees length increased from 10 to 20, then the
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proportion of times that the AR (1) model was cotlseidentified also increased. Similarly, as
the number of primary studies to be included inrtteza-analysis increased, then the proportion
of times that the AR (1) model was selected colyedso increased. Lastly, the association of
the proportion of times that the AR(1) was cornestlected greatly depended on the fit index.
The LRT extremely outperformed the other fit indictollowed by the BIC, and finally the

AICC and the AIC. Previous work with the two-lewvebdels (Ferron, Dailey, & Yi, 2002;
Kesselman, Algina, Kowalchuk, & Wolfinger, 1999)hsuggested that overall the fit indices
did not perform well in terms of model selectiorpkcitly, Ferron, Dailey, and Yi (2002) found
that the AIC only correctly identified the modelg% of the time. Additionally, they found that
upper level sample size mattered more when there sferter series.

The distribution for the proportion of times thaetARMA (1,1) model was correctly
identified was examined. The results revealedrbat of the fit indices correctly selected the
model more than 20% of the times. The results ialdicated that the greatest mean proportion
of times was for the AICM = 0.19), meanwhile the LR™= 0.07) had the smallest proportion
of correct identification for this model. One pddsiexplanation for the low identification rates
for the LRT is that the log likelihood ratio tesbuld have to reject multiple significant tests in
order to correctly identify the ARMA(1,1) model. &lassociation of the mean proportion of
times that the ARMA(1,1) model was correctly id&at by the fit indices and the interaction
effect of the type of fit index and the number afiary studies to be included in the meta-
analysis was then explored. Concretely, for the #lhdex, the greatest decrease in the correct
identification was seen when the number of prinsdnglies decreased. This seemed

counterintuitive, given the expected improvemerthwie upper-level sample size increase. This
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can be due to the fact that, overall (less than 20%e time), the fit indices did not correctly
select the ARMA (1,1) model.

However, there was hardly any difference for tradeis selected by the LRT in the
mean proportion of correct selection when the nurberimary studies increased.
Additionally, Gomez, Schaalje, and Fellingham (20f@bind that success rates tend to rely
greatly on sample size and type of covariance ttrecrates tend to be higher for the simpler
covariance structures. Similar results were foumtthis current study in which the success rates
tended to be higher for the models which had lessptex error structures for particular fit
indices.

Fixed Effects

The fixed effects were examined in terms of variousccomes of interest: bias, RMSE,
confidence interval coverage and width, Type | eraad power for the tests of the fixed effects.
The extent to which the fixed effects were biased &unction of the study’s design factors was
examined by looking at two outcomes of interest,lilas and the RMSE. The results indicated
that for both of the treatment effects, the simftevel and the shift in slopes, the average bias
value was close to zero, across all of the comimnatof the design factors.

An examination of the RMSE values revealed simgults for both of the treatment
effects across most of the design factors. HowdlhierRMSE values were impacted by the
number of primary studies included in the meta‘gisl(the RMSE values decreased as the
number of primary studies increased) and by theamees of the error terms (as the variance
shifted from most of the variance at the upperlet@most of the variance at level one), the

RMSE values tended to decrease. This outcome suitpgesf possible, researchers should strive
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to increase their level-three sample size (humbeprimary studies included in the meta-
analysis).

An initial analysis of the confidence interval coage revealed that there was no
meaningful variability in the mean interval covesdgr the fixed effects. Therefore, no further
investigation was warranted. Prior research (Feetaal., 2009) had shown that the coverage
estimates tended to be highest, 0.942 when autdaton was modeled versus when the
autocorrelation was not modeled. However, the otiistudy illustrated that the mean coverage
approached the nominal value across all seven mdaieboth of the fixed effects (shift in level
and shift in slope).

An exploration of the confidence interval widthslicated that as the number of primary
studies increased and the variances of the emmistshifted to being mostly at level one instead
of at the upper levels, then the mean intervalhvidhded to decrease. Additionally, for the
ARMA (1,1) model, the mean interval width vastlycdeased as the level of the autocorrelation
parameter increased. These results indicated &yaapplied researchers to attempt to add to the
number of primary studies included in the meta mislwhen possible. This was consistent with
previous work that investigated the three-level eid@®wens, 2011), which found that the
interval widths tended to be smallest when the remolb primary studies was largest and when
most of the variance was at level one as opposetsh of the variance being at the upper
levels. The results also supported the findingsre¥ious work which looked at the two-level
model (Ferron et al., 2009), which showed thatttean interval widths tended to be smallest
when there were more upper level units (humberdi@pants) and there was less variability

among the upper level units.
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The exploration of the Type | error rates indicateat the Type | error fell within
Bradley’'s (1978) liberal criterion for both of thiged effects. Therefore, no further analyses
were warranted to examine the variability of theam@&vype | error rates. These results are
slightly different from prior studies (Gomez, Sch@a& Fellingham, 2005) which found that the
Type | error rates tended to be higher for the nwselected solely by the AIC and BIC.
However, this current study found that the Typerdretended to be close to the nominal value of
0.05 across all seven models.

Power estimates for the phase effect (shift ielleand the interaction effect (shift in
slopes) revealed that when most of the varianeélsvel one, then the power estimates are
greater than 0.9 and did not tend to depend onuh#ber of primary studies included in the
meta-analysis. However, when most of the variaa@ the upper levels, and the number of
primary studies is increased, then the mean postenate also increased. Previous research did
not look directly at power estimates; however tbheatusions regarding the importance of
increasing the upper level units can still be nofdds study showed that this becomes
increasingly important when there is great varigbdt the upper levels.

An analysis of under-, over-, and correct spediiitawas done to investigate whether
there was a general rule that can used when sedexlievel-one error structure. Specifically, for
the bias and 95% confidence interval coverage wasmed. The analysis found that it really
did not make a huge difference whether the levelsiructure was correctly specified, over-
specified, or underspecified. Therefore, no genetlal of thumb could be applied in terms of the

fixed effects.
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Variance components

Variance components were then analyzed in ternsasf RMSE, confidence interval
coverage and widths. First, the bias for both ktkhiete and level-two variance components were
examined for the treatment effects. Relative bias also calculated for these parameters since
their known values were not equal to 1 and therpater did not contain levels that included the
value of 0. An exploration of the level-three aadd|-two variance components revealed that
although, the estimates tended to be overestimtters were no medium or larger effects.
Previous work had revealed that there was subatdmnés in the variance components when the
number of participants were small and the seriegttewas short, either 4 or 8 (Kwok, West, &
Green, 2007; Murphy & Pituch, 2009) even when tloeleh was correctly specified.
Additionally, Owens (2011) concluded that the wheost of the variance was at the upper
levels, then there was increasingly more biasenviiriance components. However, this current
study did not show any of the design factors hagimgedium or larger effect on the bias for the
level two and three variance components with thgiraal data. Due to the large range for the
variance, the data were then trimmed for the ngdabias and the RMSE values; the results of the
additional analyses are contained in Appendix A.

However, the residual variance tended to be ovietastd for the majority of the models
(all of the models with the exception of the ID negdFor the ID model, the bias in the residual
variance tended to be underestimated. As the t#véle autocorrelation parameter increased,
then the bias in the level-one variance becameasingly larger for all of the models with the
exception of the ARMA (1,1) model. The residualiaace estimate for the ARMA (1,1) model
tended to be most bias when there was no autoabaeland least bias when the autocorrelation

parameter was 0.2.
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The RMSE for the level-one variance revealed siméaults. The RMSE values tended
to increase with greater levels of autocorrelatiod decrease with an increase in the series
length and total variance for all of the modelg;ept again, for the ARMA (1, 1) model. Some
of these conclusions support previous work withttiree-level model (Owens, 2011) which
indicated that the bias in the residual variance dependent on the autocorrelation parameter.
This would seem intuitive given that the autoc@tieh parameter represents the correlation, or
the relationship between the observations withpauicipant. The more correlated these errors
are, then it could be expected that there woulchbee difficulty in producing precise parameter
estimates for the level-one variance. Previous wovr&stigating the three-level model did not
look at the ARMA(1,1) models. The current studyrfduhat when there is no autocorrelation,
then the ARMA(1,1) model was problematic in estimgthe level-one variance. The model
tends to be most precise when there is at leastderate amount of correlation among the level-
one errors (both and( ] at least 0.2). This also seems instinctive, givt the ARMA(1,1)
model is attempting to estimate a more complexetated level-one error structure. When there
is no correlation among the level-one error, thenrhodel’'s parameter estimates tend to be
problematic.

The bias and RMSE found in the autocorrelationpatar was then explored across all
of the design factors. The interaction betweenvtreances of the error terms and the type of
model, tended to affect the bias observed for thecarrelation parameter. When most of the
variance was at the upper levels, the mean biatéoautocorrelation parameter tended to be
minimal across the models. Similarly, when modhefvariance was at level one, then the
autocorrelation parameter estimate tended to gbtktiunderestimated for all of the models, and

again, this was magnified for the ARMA(1,1) modehen there was no autocorrelation. The
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study did not completely support other work invgating the three-level model (Owens, 2011),
which found that on average, the autocorrelaticampeter tended to be unbiased across all
factors. Conversely, this study did indicate ti&t variances of the error terms did seem to
impact the precision of the autocorrelation paramet

This current study indicated that the moving avernagrameter tended to be
underestimated by all of the fit-selected models,dverestimated for the ARMA (1,1) model.
The bias found in the moving average parameteretiol be greatly impacted by the amount of
correlation found in the level-one error structufee parameter estimate was overestimated
when there was no correlation, slightly underedi@tiavhen the moving average parameter was
0.2, and even more underestimated as the movimgge@arameter increased to 0.4. Again,
this result indicates that there should be at Isaiste moderate level of correlation among the
error structure in order to observe optimal perfance when utilizing a model as complex as the
ARMA (1,1) model.

Confidence interval coverage for each of the vagaromponents were estimated as the
proportion of the confidence intervals at the &%l that contained the true parameter estimates.
Coverage intervals for the level-three variance ponent for the phase effect tended to
overcover but were closest to the nominal valu@.8% when the number of primary studies was
increased from 10 to 30. Further examination efdffects revealed that the relationship
between interval coverage and the variances ofittee terms depended on the number of
participants. Furthermore, when most of the vaeanas at the upper levels, the impact of the
level-two sample size was attenuated. However, whest of the variance of the error terms is
at level one, the mean interval coverage greatsemsed as the number of participants

increased. Specifically, when most of the variaisa the upper levels, regardless of the level-
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two sample size, then the mean interval coveragddamend to overcover, or would be higher
than the nominal value of 0.95. When most of theavae is at level one, and the number of
participants is 4, then the interval coverage tenanhdercover. If the number of participants is
increased to 8, then the interval coverage termyéncover.

Interval coverage for the interaction effect foe thvel-three variance component was
then investigated. When most of the variance oktiner terms is at the upper levels, and the
series length was 10, then the interval tend ghtly overcover, and this was magnified when
the series length was increased to 20. Howevernwiest of the variance is at level one, and
the series length was 10, then the interval wouldleucover, and when the series length was
increased to 20, then the coverage would tend ¢ocover. There was little to no difference
between the levels of the error variances wherséhnies length was 20. Additionally, when the
number of participants was 4, the mean intervakcage for the interaction effect tended to
undercover, and the inverse was observed, the meamal coverage tended to overcover when
the number of participants was 8. Prior researcbluing the three-level meta-analytic model
(Owens, 2011) also indicated that the coveragéievel-three variance components tended to
be greater than the nominal value of 0.95. Thearebealso showed that similar impact factors:
the combinations of sample sizes at each of theldeand the variances of the error terms.

Interval coverage for the level-two variance comgras for both of the intervention
effects tended to slightly undercover. A furtheaexnation into the medium or larger effects for
the level-three variance component for the phasetefshift in level) indicated that when the
most of the variance of the error terms is at leved, the mean interval coverage tended to
increasingly undercover, or fall below the nominalue of 0.95. This undercoverage was

magnified for the ID model, with interval coveraggproximately 0.60. Similarly, the analysis
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revealed that for all of the models, with the extwepof the ID model, the level of
autocorrelation did not affect coverage. Howewer tfie ID model, the mean interval coverage
was lowest when the autocorrelation parameter weetgst. There were instances when the
coverage was close to O for the ID model. Additlyndor the ID model, coverage approached
the nominal value of 0.95 when there was no autetatron. Similar results were found for the
level-two variance component for the shift in sle@teraction effect). This was similar to
previous work analyzing the three-level models (@sy&011) which also found that the level-
two variance components tended to undercover.

Confidence interval coverage for level-one residiaaiance was then analyzed as a
function of the design factors in the study. Theerage was problematic, ranging from a mean
of 0.56 to 0.70 across the various models. Onlymkdium or larger effects were examined and
found that the mean interval coverage for the tedidariance decreased to even lower values as
both the level of autocorrelation and the numbegsrohary studies to be included in the meta-
analysis increased. Additionally, the interval aagge for the level-one variance was lower when
the series length was longer for all models wiehékception of the ID model. The reverse was
true for the ID model, which showed an increasthémean interval width when the series
length was longer. Prior work involving the thres¢l model (Owens, 2011) also found that the
interval coverage for the level-one variance wagelothan the nominal rate of 0.95. An
additional finding in prior works (Owens, 2011) sheml that when the level of autocorrelation
was zero, then the coverage rates were optimathakiconsistent with this current study.
However, this study also found that again, the doation of the number of primary studies and

series length also had an impact on the intervatiage rates for the residual variance.
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The distribution for the coverage for the autocatien parameter illustrated great
variability both across and within the models. Atifier examination into the medium or larger
effects revealed that for the AR(1) model, the miegerval coverage was similar (approached
the nominal value of 0.95) across all levels ofabé&correlation parameter. The fit selected
models revealed that the mean interval coveragdavas than the nominal value with
moderate levels of autocorrelatign£ 0.2) and approached the nominal value when thase
no autocorrelationp(= 0.0). Finally, the ARMA(1,1) model illustratelde inverse relationship,
the mean interval coverage increased as the Iétke@utocorrelation parameter increased from
0.0 to 0.4. When the level of the autocorrelatiangpneter was greatest, then the interval
coverage for the ARMA (1,1) model approached noinialue. These findings again supports
prior work (Gomez, Schaalje, & Fellingham, 20050l aevealed the fit selected models tend to
perform better with the less complex error strussuwhile the ARMA(1,1) tend to favor the
more complicated error structures.

Mean interval coverage was then analyzed for theimgaaverage parameter.
Additionally, the medium or larger effects illuged that the mean interval coverage decreased
as the level of the autocorrelation parameter sszd from 0.0 to 0.2, but remained comparable
fromp = 0.2 top = 0.4. However, a more in-depth analysis revetileceffect of the level of the
moving average parameter on the mean interval ageedlepended on the type of model.
Specifically, the interval coverage was greatesttie fit index selected models when the level
of the moving average parameter was 0.0, and sshallegen the moving average parameter was
0.2 and 0.4. However, for the ARMA (1,1) model, thean interval coverage was lowest when
the moving average parameter was 0.0 and greaktest the parameter was 0.2 and 0.4. This

conclusion reinforces a common trend in this chapite fit index selected models tend to have
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optimal performance for less complex models, wthileARMA(1,1) performs best for more
complicated error structures.

Confidence interval width was described as theayedifference between the upper and
the lower limits of the 95% confidence intervalelconfidence interval width for the both the
level-three and level-two variance components vaeadyzed. The widths were large, this
finding is consistent with prior work dealing witioth the two-level (Ferron et al., 2009) and the
three-level (Owens, 2011) models. Interval widibisthe level-one variance revealed that the
mean interval width decreased as the series lengthper of participants, and number of studies
to be included in meta-analysis increased. Prewark (Owens, 2011) found similar results
that the widths became even smaller with increasetple size at each level. Additionally,
Owens (2011) had found that the level of the autetation parameter also affected the interval
width. This current study did find a similar congilon, however also finding that this depended
on the type of model. More specifically, for the AR model, the width tended to decrease as
the level of the autocorrelation increased. Theas mo impact on the width for the ID model
with varying levels of autocorrelation.

Confidence interval width for the autocorrelaticargmeter was impacted by the
interaction effect: the type of model that was usedstimate the parameters and the level of the
autocorrelation parameter. For the correctly spegtifirst-order autoregressive model, AR (1),
there was little difference in the mean intervalithi The models selected by the fit indices
revealed that the width were narrowest when thexg no autocorrelation and wider for the
higher levels of autocorrelation. The ARMA (1,1) debillustrated, again, the better accuracy
for the higher levels of autocorrelation. The medarval width was greatedti(= 8.30) for the

correctly specified ARMA (1, 1) model, which seenagghin kind of counter intuitive. One
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possible explanation again, could be the factttiafit selected models rarely correctly
identified (less than 20% of the time) the ARMAI1(Llmodel, therefore rarely estimating the
moving average parameter. This can be coupledtiwtifiact that the ARMA (1, 1) model is not
precise, however, it is estimating the model mdtrenathan the fit-selected models. The interval
width decreased greatly for the ARMA (1, 1) modellze level of moving average parameter
increased. This again, maintained the notion thaperformance of the ARMA (1, 1) model is
greatly improved with the presence of a more cateel level-one error structure.

The analysis for the both the level-three and kel variance components revealed that
the bias was comparable across the models for ttamece components. However, there
seemed to be a difference in the estimation ofékilual variance based on whether the level-
one error structure was correctly, under-, or ogpecified. Specifically, the analysis revealed
that for the residual variance, when the ID modéhe correct model, the bias was minimal for
the ID model, but greatest for the ARMA (1,1) mod&hen AR(1) was the correct model for
the residual variance, the bias was comparablthéounder-specified (ID model), and the
correctly-specified AR(1) model. However, the ARMAIL) model did not do a comparable job
estimating the residual variance. This conclusgamsupporting the finding that the ARMA

(1,1) model tended to perform worse with littlentm autocorrelation.

Limitations of the Study

There are many benefits to conducting Monte Carksiraulation research. These types
of studies allow researchers to operate undertigeparameter values and determine how
various design factors or values for these faatarsimpact the true parameter estimates. The
conditions, that is, the design factors and theeskhosen for each of those factors, affect the

study’s generalizability.
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The data in this study were simulated based onfspdesign conditions. Those
conditions were chosen based on a review of sicge-literature, meta-analyses of single-case
data, and applied work that was done using thetleeel model to aggregate data across
studies. The specific conditions chosen for thislgtare only a portion of the possible options
that could have been included in this current stddherefore, the results of this study can only
be generalized to studies with the same or simdaditions. Any conclusions beyond the
observed conditions should be interpreted withioauiThe next section will address detailed
limitations based on the specific design factoat tirere used in this study.

First, the study assumed that all of the primangists included in the meta-analysis used
a multiple-baseline design. This design was seleater the previously discussed reversal (or
A-B-A-B) design that was used in the social behastady (Lorimer & Simpson, 2002) or even
the popular alternating treatment design (Kazdd®® Shadish & Sullivan, 2011). An
additional feature of the single case studies Wwasthe dependent variable was assumed to be
continuous for all of the studies. The use of camus variables in single-case studies is
common in terms of mathematics achievement (B#lieg, Scheuermann, & Webber, 2009) or
words read per minute (Tam, Heward, & Heng, 2006gre are various types of outcomes that
are commonly used in single case studies, sucimasybordinal, or count outcomes, for
example, counting the number of times that a stutddks out without raising their hands or the
number of times that a student leaves their sdets@ examples would require different types of
assumptions using a Poisson distribution (Shadigtir&skopf, 2007; Shadish et al., 2008).

This study assumed that the same outcome was asesbatudies. This is a huge
assumption considering that outcomes can be meahsugevariety of ways. For example, there

are many measures that can be used to appropmaézlgure mathematics achievement.
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Additionally, the models that were used to analywedata only included linear trends, however,
more complex trends, such as adding a quadratalmc term, could have been used; non-linear
trends are also commonly used to investigate sicage data (Beretvas, Hembry, Van den
Noortgate, & Ferron, 2013; Shadish & Rindskopf, 200n addition to assuming the same
outcome, the study used the raw data in the syistbéthe study, perhaps there could be
different results if the data were standardizetemd.

This study also found that overall, the treatméfatots, including both the shift in level
and the shift in slopes, were not biased. Howedwes,study did not look at the effects on
particular groups of individuals, such as boysgids. This would involve conducting some
moderator analyses.

Implications for Researchers, Meta-analysts, and M&odologists

Meta-analysis of single-case studies has becomeasingly popular, due to many
elements. Accountability and the need to assoeiateidy with an effect have led to statistical
methods being applied, in addition to the popuianal analysis of single case data. The study
involves not only look at an intervention withirstudy, but examines a method for combining
treatment effects across multiple studies usingdhedata from single-case studies. This study
has various implications, not only for the appliedearchers who are conducting intervention
research daily; but also for the meta-analysts, sdek to investigate intervention effectiveness
across multiple studies. Additionally, this studastsignificance for the methodologists who seek
precise methods for determining treatment effeéterwmeta-analyzing single-case research.

The results of this study can also be applied beéyba framework for this model. The

results can be generalized to many three-level laodibis can include, but is not limited to
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most longitudinal studies, that may have multigbservations nested within an individual,
individuals nested within studies or schools omeveassrooms.

Implications for the Applied Single-Case Researcher

First, this study examined the use of fit indit@sorrectly identify covariance structures
and found that certain fit indices performed optionader a range of conditions. For the 1D
model (assuming the data has no autocorrelatibe),.RT tended to have the best performance.
The AR(1) model was correctly identified most oftgnthe LRT index, however performance
across all of the models was improved with incrdasgies length and increasing the number of
primary studies. All of the fit indices on averagerrectly identified the AR(1) model at least
80% of the times.

The overall performance of the fit indices for séleg the ARMA(1,1) model was not as
positive. None of the fit indices used in this ewmtrstudy correctly identified the ARMA(1,1)
model more than 20% of the time. However, if on¢éhefaforementioned indices must be used
to identify the ARMA(1,1) model, then choose theCAfor the AIC correctly selected the
model the most often and the LRT fit index sele¢tedmodel the least often. These findings
indicate that fit indices work well for the lesswaplicated error structure (ID and AR(1)),
however if the researcher believe the data hasra owmplex error structure, such as
ARMA(1,1) then fit indices is not be a suitable ioptfor correct model selection. The
researcher should just select the level-one etroctsire a priori. The conclusions also suggest
that increasing the series length improved perfoceaf the fit indices across all models.
Given this conclusion, it is recommended that slel@chers would like to use fit indices for
model selection, then increasing the number of mlasiens would increase the precision of

correct model identification.

206

www.manaraa.com



Another factor that continued to impact parameséinetes was the amount of total
variance in the study. This impact can be redutagplied researchers can attempt to control
the amount of extraneous variability in the stuagttmay be due to the study’s design. One
example would be to ensure that there is stableieance in the baseline phase. Kazdin (2011)
characterizes stable performance as one that &habbtrend or slope with little to no
variability. Additionally, results revealed thatnmeasing the number of participants in the study
could greatly reduce the bias observed in the mee@omponents.

Implications for the Applied Single-Case Meta-analgt

Meta-analysts who are interested in the treatmigaxtts (both the shift in levels and the
shift in slopes), the results are promising. Ovethé treatment effects were not biased across
the studies, however more precise estimates cabta@ed with increasing number of studies to
be included in the meta-analysis. The treatmeetceffare sometimes, of most value to answer
the question as to whether or not the interventias effective across studies. However, maybe
work can be done in terms of looking at potentialfijgling moderators to gain a deeper
understanding of the treatment effects acrossqoéaiti subgroups or factors. Additionally, the
level of autocorrelation only affected the ARMAXLmodel: more precise estimates were found
with increasing levels of autocorrelation for thRMA(L1,1) model. This seems again, intuitive
given that this model is trying to estimate a veoynplex correlated error structure, and if the
error structure is not correlated, then the ARMAL]Inodel should not be used. The current
study supported past research and revealed thaattece components (both level-three and
level-two) were biased across all design factomwneéler, slight improvements were seen when

the number of studies to be included in the metdyars were increased. This would imply that
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when possible, meta-analyst should attempt to ase&¢he number of studies to be included in
the meta-analysis.

The level-one variance components (residual vagiaagtocorrelation parameter, and the
moving average parameter) were biased, and thespreof the estimates heavily depended on
the level of autocorrelation that was used in tloeleh The residual variance became more bias
with increased autocorrelation; conversely, the impaverage parameter became less biased
with increased autocorrelation. The precision efdlitocorrelation parameter was unaffected by
varying levels of the correlated errors. This ssggiéo meta-analysts that the presence of a
correlated vs. uncorrelated level-one error stmecshould determine which model one chooses
for their data. Consequently, this can greatly iotplae accuracy of the parameter estimates and
thus, inferences that can be made from these dsBmiEherefore, if the meta-analyst
hypothesizes that the error structure is uncordl&imilar to an ID model) or has a simple
correlated error structure, then the fit indices raiable for selection of the correct error
structure. However, if the error structure is assdno be more complex, then selecting this error
structure a priori is better than relying on therfdices.

Implications for Methodologists

The study analyzed the use of a range of violatiorike independence error assumption.
Additionally, the study examined the accuracy abpaeter estimates when the models were
misspecified. Overall, the model was robust to ynafithe misspecifications in terms of the
treatment effects. However, for the variance coneptsy the model did not perform as well. It
appeared that the model would randomly malfunctamal occasionally estimate the variance to

be large, which led to the average parameter estgreing biased. Further work should be
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done using different estimation methods, such a8tyesian approach (Baldwin & Fellingham,
2013; Gelman, 2006) to see if the observed bidisarvariance components can be reduced.
Additionally, methodologists may want to look aupting the violation of the error

assumption with other violations such as also itiga8ng non-normal distributions. This would
be a reasonable study given that many of the datagle case research is not continuous and
normally distributed. Lastly, more simulation war&n be done to see if the performance of the
fit indices would improve is there was cutoff ireleof just looking at relative differences when
utilizing the fit indices to correctly identify tHevel-one error structure (e.g. AIC smaller by at

least 2 or 3).
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APPENDIX A: TRIMMED DATA ANALYSIS

Trimmed Data Analyses for the Variance Components

Relative Bias

The next section describes the additional analysesvere conducted for the trimmed
relative bias values for the variance componentgdch of the treatment effects across both of
the upper levels for the model.

Level-three variance for the overall average treatrant effect for the phase effect
(shiftin level). GLM models were run to determine if any of theige factors had a medium or
larger effect; the effects (the number of primandses to be included in the meta-analygfs|
0.093] and the variances of the error ternfs [0.096]) were identified. The model including 4-
way interactions explained 95% of the variabilithe figure (see Figure Al) below displays the
effects and the means for the relative bias a@ashk value for the effect. Specifically, the
relative bias decreased as the number of primadies increased from 18/(= 0.01,SD=
0.02) to 30 ¢ = 0.002,SD = 0.009). The variability also tended to decreailk increased

number of primary studies included in the meta-gsisl
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Figure Al.The relationship of the trimmed distribution foetlevel-three variance of the phase
effect across the number of studies to be includélde meta-analysis.

Furthermore, the relative bias for the level-thragance of the phase effect (shift in
level) tended to decrease as the variance wagdglirtim being mostly at level onkl (= 0.01,
SD=0.02) to the upper levels(=0.002,SD = 0.008). The variability also tended to decrease
with more total variance, or again, as the variamas shifted from being mostly at level-one to

being mostly at the upper levels.
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Figure A2.The relationship of the trimmed distribution foetlevel-3 variance of the phase
effect across the variances of the error terms.

Level-three variance for the overall average treatrant effect for the interaction
effect (shift in slopes).The variance for the bias for the level-threeatace of the interaction
effect was further investigated for the trimmedtiele bias. The GLM models, which included
5-way interactions and explained 93.7% of the \mlity, revealed two significant factors that
the variances of the error termg< 0.06) and the interaction of the type of model t#re series
length (0.07) had at least a medium effect. Themmelative bias decreased slightly as the
variances shifted from being mostly at level ole<0.018,SD = 0.04) to most of the variance
being at the upper levels(= 0.004,SD = 0.012). The variability also tended to decrezséhe

variability shifted to being most at the upper levas reflected below by Figure A3.
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Figure A3.The bias for the trimmed distribution for the Ie@evariance for the interaction effect
(shift in slopes) as a function of the variancetfa error terms.

The relationship of the bias for the level-thregasce for the shift in slopes was then
analyzed as a function of the interaction of thgetgf model and the series length. The line
graph (see Figure A4 below) illustrates that theshs$ higher across all seven models when there
is a shorter series length, however this is aceg¢atufor the ID model. The ID model shows a

huge increase in the bias when the series lendt. is
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Figure A4 The relative bias for the level-3 variance fag #hift in slopes for the interaction of
the type of model and the series length.

Level two variance for the phase effect (shifts ifevel). The model, including 3-way
interactions, explained 99.7% of the variabilitheTresults revealed one medium or larger
effect: the interaction of the level of autocortiela and the type of modeh?= 0.22). Graphs
were produced to further examine the trimmed naddbias values.

Figure A8 below illustrates that the mean biasinsilar across all of the models with the
exception of the ID model. For the ID model, theameelative bias tends to increase greatly as

the level of autocorrelation increases.
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Level two variance for the phase effect (shift inlspe). The model, including@?order
interactions explained 97.7% of the variability ardealed two medium or larger effects: the
three-way interaction of the series length andviiréances of the error terms and the level of
autocorrelationi’= 0.06) and the two-way interaction of the levehafocorrelation and the
type of modelh§?= 0.19). The graphs below further examine the i@ahip of both effects on
the mean relative bias for the level-two variammetiie shift in slopes.

Figure A6 (top panel) illustrates that for the sbpseries length of 10 and when most of
the variance is at level one, then mean bias isereas the level of autocorrelation increases.

However, when the series length is shorter and ofdste variance is at the upper levels
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Figure A6 The effect on the mean relative bias for thellewve variance for the shift in slopes
as a function of the three way interaction betwibenlevel of autocorrelation, the error variances
and the series length.
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Figure A7.Distribution of trimmed relative bias for the ghif slopes as a function of the
interaction between the level of autocorrelatiod #re type of model.

Figure A7 above displays little difference for tinean bias across the seven models with
the exception of the ID model. Again, for the ID died the mean bias increases as the level of
autocorrelation increases.

Root Mean Square Error (RMSE)

The next section describes the additional analysesvere conducted for the trimmed
RMSE values for the variance components for eatcheofreatment effects across both of the
upper levels for the model.

Level-three variance for the overall average treahent effect for the phase effect
(shiftin level). The GLM models (including two-way interactiongptained 99% of the
variability and revealed one medium or larger dffdee interaction of the number of primary
studies with the variances of the error terpfs (0.06). Further examination of the interaction

with the RMSE values illustrated (see Figure A@jttior the shorter series length (10), the
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RMSE values tend to be greater than when the denggh is longer (30), however the gap is

even greater when the variances of the error tesmmstly at the upper levels.
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Figure A8 The line graph illustrates the effect of the iatgion of the number of primary
studies and the variances of the error terms ofrithened RMSE values for the level-three
variance for the shift in level.
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Figure A9. The relationship of the trimmed RMSEued for the level-three variance for the
interaction effect across the number of primarylists.

Level-three variance for the overall average treatrant effect for the interaction
effect (shift in slopes). The GLM models included two-way interactions, @rhexplained 99%
of the variability found that there were two mediomlarger effects. The number of primary
studies §°= 0.20) and the variances of the error ternis 0.67) tended to have the most impact
on the trimmed RMSE values for the level-threearaze for the interaction effect. The two
boxplots below, Figures A9 and A10, respectivelgpllys these effects and their impact on the

RMSE values.
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Figure A9 above revealed that the mean and thahéty in the RMSE values tended to
decrease with increased number of primary stuéiethermore, in Figure A10 below, the mean
and the variability of the RMSE values tended wease as the variance was shifted from being

mostly at level one to most of the variance beinip@ upper levels.
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Figure A1Q The relationship of the trimmed RMSE values fa kevel-three variance for the
interaction effect across the error variances.

Level-two variance for the overall average treatmeneffect for the shift in level. The
model, including third order interactions, explari#s.9% of the variability. There were three
medium or larger effects: number of participamfs=(0.12), number of studies to be included in

the meta-analysig|t= 0.22), the variance of the error term$<0.43).
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First, the mean for the RMSE values for the lewa-t/ariance for the shift in level

decreased as the number of the participants inetifasm 4 to 8. The variability also tended to

decrease with increased number of participants #dm8 as is displayed below in Figure A11.
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Figure A11.The box plot illustrating the distribution of ttkmmed RMSE values for the
variance for the phase effect as a function ofiln@ber of participants.
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Figure A12 The box plot illustrating the distribution of tttmmed RMSE values for the
variance for the phase effect as a function ofiln@ber of primary studies.

The figure above (Figure A12) shows the RMSE valioe the level-two shift in level as
a function of the number of primary studied. Theamand the variability of the RMSE values
tended to decrease as the number of primary studie=ased from 10 to 30. Furthermore, the
variability appeared similar across the levelstf@ number of primary studies, with the
exception of the outlier when the number of primstiydies was larger (= 30).

Conversely, the mean RMSE values tended to incrasmfiee variance of the error terms
(see Figure A13 below) were shifted to mostly beihtgvel one to mostly being at the upper
levels. The variability also tended to increasehwlie presence of an outlier, with increased

total variability.
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Figure A13 The box plot illustrating the distribution of ttrtmmed RMSE values for the
variance for the phase effect as a function of/drégance of the error terms.

Level-two variance for the overall average treatmeneffect for the interaction effect
(shift in slopes). GLM models were run to further examine the relahip of the design factors
with the trimmed level two variance for the shiftdlopes. The model including two-way
interactions explained 98.4% of the variability aedealed four medium or larger effects:
number of participants)t= 0.08), the number of primary studies to be inetlith meta-analysis
(n?= 0.13), the series length’E 0.26), and the variance of the error terqfs 0.35).

As the number of participants (see Figure Al4),nhmber of primary studies (see

Figure A15), and the series length (see Figure Ai@kased, then the mean RMSE values

decreased. Furthermore, the mean RMSE values sestes the variance of the error terms
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(see Figure A17) were shifted from most of theatace being at level-one to most of the

variance being at the upper levels. Both levelgHernumber of participants seemed to include

several outliers at the upper ends.
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Figure A14 The box plot illustrating the distribution of tttmmed RMSE values for the
variance (level two) for the shift in slopes asiadtion of the number of participants.
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Figure A15 The box plot illustrating the distribution of ttimmed RMSE values for the
variance (level two) for the shift in slopes asiadtion of the number of primary studies to be
included in meta-analysis.
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Figure A16 The box plot illustrating the distribution of ttimmed RMSE values for the
variance (level two) for the shift in slopes asiadtion of the series length.
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Figure A17 The box plot illustrating the distribution of themmed RMSE values for the
variance (level two) for the shift in slopes asiadtion of the error variances.

Level one variance or residual varianceThe resulting model included 3-way
interactions and explained 98% of the total vahgbiThe following medium effects were
found: the series length or number of observat{ghs 0.06), the interaction of the level of the
autocorrelation parameter and the type of mowfet 0.07), the interaction of the variances of
the error terms and the type of modgl£ 0.11). Graphs were created to analyze the asiocia
of the mean RMSE values for the level one variamitie these effects. The graph below (see
Figure A18) depicts the association of the trimmR&SE values for the level one variance and
the number of observations (series length). Smediyi, the graph demonstrates that as the series

length is increased from 10 then the mean RMSH®ievel one variance is decreased.
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Figure A18 The box plot illustrating the distribution of tttmmed RMSE values for the
level one variance across the series length.

The line graph below in Figure A19 illustrates tetationship of the mean RMSE values
for the level one variance and the interactiorhef\tariances of the error terms and the type of
model. Furthermore, the graph shows that when ofdse variance is at level one the mean
RMSE values is consistently lower across all ofrtiaelels than when most of the variance is at
the upper levels. However, that difference is gneathen most of the variance is at the upper
levels for some of the models. For example, the ARM1) model has the greatest increase in
the mean RMSE values for the level one variancewthe variances of the error terms are
shifted from most of the variance being at leved tmmost of the variance being at the upper
levels. The smallest difference is seen for thenddel, in which there was very little change in
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the mean RMSE values for the level one variancenvthe variances of the error terms were
shifted from most of the variance being at leved tmmost of the variance being at the upper

levels.
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Figure A19.Line graph illustrating the relationship betweba mean RMSE values for the level
one variance and the interaction effect of thearares of the error terms and type of model.
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Figure A20.Line graph illustrating the association betweenrttean RMSE values for the level
one variance and the interaction effect of thellef¢éhe autocorrelation parameter and type of
model.

Lastly, the association of the mean RMSE valueshfelevel one variance and the
interaction effect of the level of the autocorrglatparameter and the type of model were
analyzed using a line graph (see Figure A20). Acemsne of the models, such as the ID, AR(1),
and models selected by LRT, the mean RMSE valuethédevel one variance tended to
increase as the level of the autocorrelation paramnecreased. For the remainder of the fit-
index selected models (AIC, AICC, and BIC), the mBMSE values is smallest wher= 0.2
and largest whep = 0.4. For example, for the models selected by, Bi€ mean RMSE values
for the level one variance are as follows: 0.2 M =0.21,SD=0.17);p =0.0 M =0.27,SD=
0.19);p = 0.4 M =0.30,SD= 0.14). Similar patterns are observed for the Aid AICC
models. Finally, a vast decline in the mean RMSIldasis noticed for the ARMA(1,1) model as

the level of the autocorrelation is increased ff@th(M = 0.56,SD= 0.43) to 0.2 = 0.31,SD

= 0.25) to 0.4} = 0.32,SD= 0.18).
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APPENDIX B: TABLES OF ETA-SQUARED VALUES

E?a?lgqﬁgred Values|{)for the Association of the Design Factors with Breportion Correct for the 1D
Model

T|2
Type of Fit Index 771
Number of Primary Studies .068
Number of Primary Studies*Type of Fit Index .064
Error Variance .038
Series Length .027
Number of Participants .006
Number of Primary Studies * Error Variance .004
Number of Participants* Error Variance .002
Series Length* Number of Primary Studies .002
Level of the Fixed Levels .002
Series Length* Error Variance .001
Number of Participants * Type of Fit Index .001
Series Length * Number of Participants .001
Number of Participants *Level of Fixed Level .0003
Error Variance * Type of Fit Index .0003
Series Length * Type of Fit Index .0001
Error Variance * Level of the Fixed Levels .00007
Level of the Fixed Levels * Type of Fit Index .00006
Number of Primary Studies * Level of the Fixed Lisve .00002
Number of Participants * Number of Primary Studies .00001
Series Length * Level of the Fixed Levels .00000
Total Explained 0.988
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Table A2

Eta-Squared Values|{)for the Association of the Design Factors with Breportion Correct for the

AR(1) Model
n2

Type of Model 0.23552
Number of Primary Studies 0.15765
Series Length 0.09592
Autocorrelation 0.09292
Number of Participants 0.05866
Series Length*Number of Primary Studies 0.0507
Series Length*Autocorrelation 0.04417
Number of Primary Studies*Autocorrelation 0.03982
Series Length*Number of Participants 0.03029
Series Length*Number of Primary Studies*Autocortiela 0.02755
Number of Primary Studies*Type of Model 0.02699
Number of Participants*Number of Primary Studies 0.02216
Number of Participants*Autocorrelation 0.02103
Series Length*Number of Participants*Autocorrelatio 0.01305
Series Length*Number of Participants*Number of RuignStudies 0.0122
Number of Participants*Number of Primary Studiestdeorrelation 0.01108
Error Variance 0.00712
Error Variance*Autocorrelation 0.00683
Autocorrelation*Type of Model 0.00598
Number of Primary Studies*Autocorrelation*Type obhtel 0.00449
Series Length*Autocorrelation*Type of Model 0.00448
Series Length*Error Variance 0.00203
Number of Participants*Autocorrelation*Type of Mdde 0.00199
Series Length*Error Variance*Autocorrelation 0.00168
Error Variance*Type of Model 0.0011
Series Length*Number of Primary Studies*Type of Mbd 0.00109
Series Length*Type of Model 0.00077
Series Length*Number of Participants*Type of Model 0.00063
Number of Participants*Number of Primary Studiesp&yof Model 0.0005
Series Length*Number of Participants*Error Variance 0.00035
Series Length*Number of Primary Studies*Error Vada 0.0003
Number of Participants*Type of Model 0.00026
Series Length*Error Variance*Type of Model 0.00024
Number of Primary Studies*Error Variance*Type of téb 0.00023
Number of Primary Studies*Error Variance 0.00019
Error Variance*Autocorrelation*Type of Model 0.00016
Number of Participants*Number of Primary StudiestiE/ariance 0.00015
Number of Primary Studies*Error Variance*Fixed Leve 0.00014
Level of Fixed Level 0.00009
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Table A2 (Continued)

2

Number of Participants*Level of Fixed Level 02)0009
Number of Participants*Error Variance*Type of Model 0.00009
Number of Participants*Error Variance*Autocorretati 0.00008
Series Length*Number of Participants*Fixed Level 0.00007
Number of Primary Studies*Error Variance*Autocoatsbn 0.00007
Level of Fixed Level*Autocorrelation 0.00007
Number of Participants*Number of Primary Studies® Level 0.00005
Error Variance*Level of Fixed Level*Autocorrelation 0.00005
Number of Primary Studies*Level of Fixed Level*Actmrelation 0.00003
Number of Participants*Error Variance*Fixed Level 0.00002
Series Length*Level of Fixed Level 0.00002
Series Length*Error Variance*Fixed Level 0.00002
Series Length*Number of Primary Studies*Fixed Level 1.49E-05
Number of Participants*Level of Fixed Level*Autocelation 1.29E-05
Series Length*Level of Fixed Level*Autocorrelation 1.14E-05
Error Variance*Level of Fixed Level 8.09E-06
Error Variance*Fixed Level*Type of Model 7.07E-06
Number of Participants*Fixed Level*Type of Model 6.78E-06
Level of Fixed Level*Type of Model 5.19E-06
Level of Fixed Level*Autocorrelation*Type of Model 2.99E-06
Number of Primary Studies*Fixed Level*Type of Model 1.6E-06
Series Length*Fixed Level*Type of Model 1.52E-06
Number of Participants*Error Variance 1.39E-06
Number of Primary Studies*Level of Fixed Level 7.88E-07

Table A3

Eta-Squared Values|{)for the Association of the Design Factors with Breportion Correct for the

ARMA(1,1) Model

2

Type of Model 0.7111737
Number of Primary Studies 0.09608
Number of Primary Studies*Type of Model 0.07899
Autocorrelation 0.02439
Series Length 0.02074
Number of Participants 0.0145
Series Length*Type of Model 0.01005
Error Variance 0.00531
Series Length*Number of Primary Studies 0.00451
Error Variance*Autocorrelation 0.00347
Number of Participants*Type of Model 0.00285
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Table A3 (Continued)

2

Series Length*Number of Participants 0,02)271
Number of Participants*Number of Primary Studies 0.00145
Number of Primary Studies*Error Variance 0.00078
Error Variance*Type of Model 0.0003
Series Length*Error Variance 0.00021
Number of Participants*Error Variance 0.00017
Autocorrelation*Type of Model 0.00013
Number of Primary Studies*Fixed Level 0.00007
Series Length*Autocorrelation 0.00005
Number of Primary Studies*Autocorrelation 0.00005
Fixed Level 0.00002
Error Variance*Fixed Level 0.00002
Fixed Level*Type of Model 0.00002
Number of Participants*Fixed Level 0.00001
Series Length*Fixed Level 0.00001
Number of Participants*Autocorrelation 0.00001
Fixed Level*Autocorrelation 0
Moving Average 0
Series Length*Moving Average 0
Number of Participants*Moving Average 0
Number of Primary Studies*Moving Average 0
Error Variance*Moving Average 0
Autocorrelation*Moving Average 0
Fixed Level*Moving Average 0
Moving Average*Type of Model 0

Total Explained

Table A4
Eta-Squared Values|{)for the Association of the Design Factors with RMSE Values for the Shift in
Level

n2
Error Variance 0.4921
Number of Primary Studies 0.4523
Number of Participants 0.01536
Series Length 0.00204
Autocorrelation 0.0003
Type of Model 0.00004
Moving Average 0.00002
Fixed Level 0
Total Explained 0.9622
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Table A5

Eta-Squared Values){)for the Association of the Design Factors with RISE Values for the Shift in

Slope

T,l2
Error Variance 0.45497
Number of Primary Studies 0.44288
Series Length 0.03721
Number of Participants 0.02018
Autocorrelation 0.00148
Moving Average 0.0000
Type of Model 0.0000
Fixed Level 0.0000
Total Explained 0.9567
TableA6
Eta-Squared Values)q) for the Association of the Design Factors wita @ Width for the Shift in Level

n2

Autocorrelation*Type of Model 0.1556
Error Variance 0.1044
Number of Primary Studies 0.1036
Type of Model 0.0753
Error Variance*Autocorrelation*Type of Model 0.0453
Error Variance*Type of Model 0.0257
Autocorrelation 0.0240
Number of Participants*fix*Error Variance*Autocotation*Type of Model 0.0177
Series Length*Number of Participants*Error Variatfetocorrelation*Type of Model 0.0172
Series Length*Number of Primary Studies*Error Vaga*Autocorrelation*Type of
Model 0.0156
Series Length*Autocorrelation*Type of Model 0.0134
Number of Participants*Autocorrelation*Type of Mdde 0.0132
Fixed Level*Error Variance*Autocorrelation*Type dfodel 0.0123
Number of Participants*Type of Model 0.0116
Number of Primary Studies*Error Variance 0.0115
Series Length*Error Variance*Autocorrelation*TypeModel 0.0107
Number of Primary Studies*Type of Model 0.0106
Number of Primary Studies*Error Variance*Moving Aage*Type of Model 0.0089
Series Length*Number of Primary Studies*Error Vaga*the*Type of Model 0.0089
Number of Participants*Moving Average*Type of Model 0.0083
Series Length*Error Variance*Moving Average*TypeNbdel 0.0083
Error Variance*Moving Average*Type of Model 0.0082
Series Length*Number of Participants*Moving Aver&bgpe of Model 0.0082
Series Length*Number of Participants*Number of RuignStudies*the*Type of Model 0.0082
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Table A6 (Continued)

n

Number of Participants*Number of Primary Studies*Mw Average*Type of Model 0.0081
Number of Primary Studies*fix*Error Variance*Autogelation*Type of Model 0.0080
Number of Participants 0.0080
Error Variance*Autocorrelation 0.0079
Number of Primary Studies*Autocorrelation*Type obhtel 0.0074
Series Length*Number of Primary Studies*Autocortiela* Type of Model 0.0073
Number of Participants*Fixed Level*Error Variancg/e of Model 0.0072
Number of Participants*Error Variance*Type of Model 0.0069
Number of Participants*Number of Primary StudiestiEVariance*Type of Model 0.0049
Number of Participants*Number of Primary StudiegtiEr
Variance*Autocorrelation*Type of Model 0.0048
Number of Participants*Error Variance*Autocorretatt Type of Model 0.0048
Number of Primary Studies*Error Variance*Type of b _ 0.0048
Series Length*Number of Primary Studies*fix*Autocelation*Type of Model 0.0047
Series Length*Number of Primary Studies*Moving Axge*Type of Model 0.0043
Number of Primary Studies*Moving Average*Type of i ¢ 0.0042
Series Length*Number of Participants*Error Variaftbe*Type of Model 0.0041
Number of Participants*Error Variance*Moving Aveetdype of Model 0.0041
Number of Participants*Number of Primary Studiesp&yf Model_ 0.0041
Number of Participants*Number of Primary StudiestiEVariance*the*Type of Model 0.0040
Moving Average*Type of Model 0.0038
Series Length*Moving Average*Type of Model_c 0.0038
Series Length*Number of Participants*Type of Model_ 0.0037
Number of Participants*Number of Primary Studies*fiutocorrelation*Type of Model 0.0037
Number of Participants*Number of Primary Studies*&rror Variance*Type of Model 0.0037
Series Length*Fixed Level*Autocorrelation*Type ofddel 0.0034
Number of Primary Studies*Error Variance*Autocoatbn*Type of Model 0.0032
Fixed Level*Error Variance*Type of Model_ 0.0030
Number of Participants*Fixed Level*Error Varianceicorrelation 0.0029
Series Length*Number of Participants*Error Variarfsatocorrelation 0.0029
Series Length*fix*Error Variance*Autocorrelation*pg of Model 0.0028
Number of Participants*Number of Primary Studiestdaorrelation*Type of Model 0.0027
Series Length*Number of Primary Studies*Type of Mbd 0.0027
Series Length*Number of Participants*Number of RagnStudies*Error
Variance*Autocorrelation 0.0026
Series Length*Number of Participants*Number of RaignStudies*Autocorrelation*Type
of Model 0.0026
Series Length*Number of Primary Studies*Error Vada*Autocorrelation 0.0026
Series Length*Number of Participants*Autocorrelatibype of Model 0.0025
Series Length*Number of Participants*Number of RuigpnStudies*Type of Model 0.0024
Series Length*Autocorrelation 0.0022
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Table A6 (Continued)

n
Fixed Level*Error Variance*Autocorrelation 0.0020
Number of Participants*Autocorrelation 0.0020
Number of Primary Studies*Fixed Level*Error Variaidype of Model 0.0019
Series Length*Error Variance*Autocorrelation 0.0018
Series Length*Number of Participants*fix*Error Vanice*Type of Model 0.0016
Number of Participants*Number of Primary Studies 0.0016
Number of Primary Studies*Error Variance*Moving Aage 0.0014
Series Length*Number of Primary Studies*Error Vaga*Moving Average 0.0014
Number of Participants*Moving Average 0.0013
Series Length*Error Variance*Moving Average 0.0013
Error Variance*Moving Average 0.0013
Number of Participants*Number of Primary Studies'Mwm Average 0.0013
Series Length*Number of Participants*Number of RuignStudies*Moving Average 0.0013
Series Length*Number of Participants*Moving Average 0.0013
Number of Primary Studies*Fixed Level*Error Variaiéutocorrelation 0.0013
Series Length*Number of Participants*fix*Autocomébn*Type of Model 0.0013
Number of Participants*Error Variance 0.0012
Series Length*Number of Primary Studies*Autocortielia 0.0012
Number of Participants*Fixed Level*Error Variance 0.0012
Number of Primary Studies*Fixed Level*Type of Model 0.0011
Series Length*Type of Model 0.0011
Number of Primary Studies*Fixed Level*AutocorretatiType of Model 0.0011
Number of Primary Studies*Autocorrelation 0.0011
Number of Participants*Number of Primary Studies*&rror Variance*Autocorrelation 0.0010
Number of Participants*Fixed Level*Autocorrelationype of Model 0.0010
Series Length*Number of Participants 0.0008
Series Length 0.0008
Number of Participants*Number of Primary Studies® Level*Type of Model 0.0008
Number of Participants*Number of Primary StudiestiEN/ariance 0.0008
Number of Participants*Error Variance*Autocorretati 0.0008
Series Length*Number of Primary Studies*Fixed L&@eitocorrelation 0.0007
Number of Participants*Number of Primary StudiestiEN/ariance*Autocorrelation 0.0007
Series Length*Number of Primary Studies*Moving Axge 0.0007
Series Length*Fixed Level*Error Variance*Type of el 0.0007
Number of Primary Studies*Moving Average 0.0007
Series Length*Number of Participants*Error Variatfdeving Average 0.0006
Number of Participants*Error Variance*Moving Averag 0.0006
Series Length*Number of Participants*Number of RuigpnStudies*Error
Variance*Moving Average 0.0006
Series Length*Number of Primary Studies 0.0006
Number of Participants*Number of Primary StudiestiEN/ariance*Moving Average 0.0006
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Table A6 (Continued)

n
Moving Average 0.0006
Number of Participants*Number of Primary Studies#d Level*Autocorrelation 0.0006
Series Length*Number of Participants*Number of RaignStudies* Fixed Level *Error
Variance 0.0006
Series Length*Moving Average 0.0006
Number of Participants*Number of Primary Studies#d Level*Error Variance 0.0006
Series Length*Fixed Level*Autocorrelation 0.0005
Fixed Level*Type of Model 0.0005
Number of Primary Studies*Error Variance*Autocoatsbn 0.0005
Series Length*Number of Participants*Number of RaignStudies*Error Variance*Type
of Model 0.0005
Number of Participants*Fixed Level*Moving Averageffie of Model 0.0004
Fixed Level*Error Variance 0.0004
Series Length*Number of Participants* Fixed Levile*Type of Model 0.0004
Series Length*Number of Participants*Number of RuignStudies 0.0004
Series Length*Fixed Level*Error Variance*Autocomgbn 0.0004
Series Length*Number of Participants*Fixed LevelpByof Model 0.0004
Series Length*Number of Participants*Number of RagnStudies*Autocorrelation 0.0004
Series Length*Number of Participants*Autocorrelatio 0.0004
Number of Primary Studies*fix*Error Variance*the*pg of Model 0.0004
Number of Participants*Number of Primary Studiestdeorrelation 0.0004
Series Length*fix*Error Variance*the*Type of Model 0.0004
Series Length*Number of Participants*Error Variatioge of Model 0.0004
Fixed Level*Error Variance*Moving Average*Type ofddel 0.0003
Fixed Level*Autocorrelation*Type of Model 0.0003
Series Length*Number of Participants*fix*Error Vanice*Autocorrelation 0.0003
Number of Participants*Number of Primary Studies*fhe*Type of Model 0.0003
Number of Primary Studies*Fixed Level*Error Varianc 0.0003
Series Length*Number of Participants*Fixed Levelf®rVariance 0.0002
Series Length*Number of Participants*Fixed LeveltAcorrelation 0.0002
Number of Primary Studies*Fixed Level 0.0002
Number of Participants*Fixed Level*Autocorrelation 0.0001
Number of Primary Studies*Fixed Level*Autocorretati 0.0001
Series Length*Number of Primary Studies*Fixed L&Vgpe of Model 0.0001
Number of Participants*Number of Primary Studiextd Level 0.0001
Number of Participants*Fixed Level*Type of Model 0.0001
Series Length*Error Variance*Type of Model 0.0001
Series Length*Fixed Level*Error Variance 0.0001
Fixed Level 0.0001
Series Length*Number of Participants*Number of RaignStudies*Error Variance 9.67E-5
Series Length*Number of Participants*Fixed Level*¥loy Average 8.41E-5
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TableA6 (Continued)

n2
Number of Participants*Fixed Level*Moving Average .38E-5
Series Length*Number of Participants*Fixed Level 7.14E-5
Series Length*Fixed Level*Error Variance*Moving Aagle 6.73E-5
Number of Primary Studies*Fixed Level*Error Variaitdoving Average 6.69E-5
Series Length*Number of Primary Studies*fix*Erroaiance*Moving Average 6.54E-5
Fixed Level*Error Variance*Moving Average 6.35E-5
Series Length*Number of Participants*Number of RuignStudies*fix*Moving Average 6.25E-5
Series Length*Number of Participants*Error Variance 5.99E-5
Fixed Level*Autocorrelation 5.94E-5
Number of Participants*Number of Primary Studies#d Level*Moving Average 5.66E-5
Series Length*Fixed Level*Type of Model 5.52E-5
Number of Participants*fix*Error Variance*the*Typmd Model 5E-5
Series Length*Fixed Level*Moving Average*Type of Kliel 4.72E-5
Fixed Level*Moving Average*Type of Model 4.36E-5
Number of Primary Studies*Fixed Level*Moving Aveetd ype of Model 3.93E-5
Series Length*Number of Primary Studies*fix*the*Te/pf Model 3.68E-5
Number of Participants*Fixed Level 2.84E-5
Series Length*Number of Primary Studies*Fixed Level 2.29E-5
Series Length*Number of Primary Studies*Error Vada*Type of Model 1.58E-5
Number of Participants*Number of Primary Studies*&rror Variance*Moving Average 1.44E-5
Series Length*Number of Primary Studies*fix*Erroaiance*Type of Model 1.32E-5
Series Length*Number of Participants*Number of RugnStudies*Fixed
Level*Autocorrelation 8.91E-6
Fixed Level*Moving Average 8.55E-6
Number of Primary Studies*Fixed Level*Moving Avermg 8.29E-6
Series Length*Fixed Level 8.24E-6
Series Length*Fixed Level*Moving Average 8.23E-6
Series Length*Number of Primary Studies*Fixed LéMgving Average 7.41E-6
Series Length*Number of Participants*Number of RagnStudies*fix*Type of Model 6.48E-6
Series Length*Number of Primary Studies*Error Vada 6.11E-6
Series Length*Number of Participants*fix*Error Vanice*Moving Average 6.03E-6
Number of Participants*Fixed Level*Error VariancetMing Average 6E-6
Series Length*Number of Primary Studies*fix*Erroaiance*Autocorrelation 5.67E-6
Series Length*Number of Participants*Number of RuignStudies*Fixed Level 1.93E-6
Series Length*Error Variance 8.75E-7
Series Length*Number of Primary Studies*Fixed Léketor Variance 6.8E-7
Autocorrelation*Moving Average 0
Series Length*Autocorrelation*Moving Average 0
Number of Participants*Autocorrelation*Moving Avega 0
Series Length*Number of Participants*Autocorrelatigloving Average 0
Number of Primary Studies*Autocorrelation*Moving érage 0
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Table A6 (Continued)

n2

Series Length*Number of Primary Studies*Autocortiela*Moving Average

Number of Participants*Number of Primary Studiestdeorrelation*Moving Average
Series Length*Number of Participants*Number of Ruign
Studies*Autocorrelation*Moving Average

Error Variance*Autocorrelation*Moving Average

Series Length*Error Variance*Autocorrelation*Movidyerage

Number of Participants*Error Variance*AutocorretattMoving Average

Series Length*Number of Participants*Error Variatfetocorrelation*Moving Average

Number of Primary Studies*Error Variance*Autocoatbn*Moving Average
Series Length*Number of Primary Studies*Error Vada*Autocorrelation*Moving
Average

Number of Participants*Number of Primary Studiegtir
Variance*Autocorrelation*Moving Average

Fixed Level*Autocorrelation*Moving Average

Series Length*Fixed Level*Autocorrelation*Moving Avage

Number of Participants*Fixed Level*Autocorrelatidvibving Average
Series Length*Number of Participants*fix*Autocoméibn*Moving Average
Number of Primary Studies*Fixed Level*AutocorretatrtMoving Average

Series Length*Number of Primary Studies*fix*Autocelation*Moving Average
Number of Participants*Number of Primary Studies*fiutocorrelation*Moving
Average

Fixed Level*Error Variance*Autocorrelation*Movingverage

Series Length*fix*Error Variance*Autocorrelation*Mong Average

Number of Participants*fix*Error Variance*Autocotation*Moving Average
Number of Primary Studies*fix*Error Variance*Autogelation*Moving Average
Autocorrelation*Moving Average*Type of Model

Series Length*Autocorrelation*Moving Average*TypéModel

Number of Participants*Autocorrelation*Moving AveetType of Model

Series Length*Number of Participants*Autocorrelatithe*Type of Model
Number of Primary Studies*Autocorrelation*Moving édrage*Type of Model
Series Length*Number of Primary Studies*Autocortiela*the*Type of Model
Number of Participants*Number of Primary Studiestédaorrelation*the*Type of Model
Error Variance*Autocorrelation*Moving Average*Tymmé Model

Series Length*Error Variance*Autocorrelation*the*ig of Model

Number of Participants*Error Variance*Autocorretatfthe*Type of Model
Number of Primary Studies*Error Variance*Autocoatibn*the*Type of Model
Fixed Level*Autocorrelation*Moving Average*Type dodel

Series Length*fix*Autocorrelation*the*Type of Model

Number of Participants*fix*Autocorrelation*the*Typaf Model

Number of Primary Studies*fix*Autocorrelation*theype of Model

fix*Error Variance*Autocorrelation*the*Type of Mode
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Table A7
Eta-Squared Values){)for the Association of the Design Factors with @éVidth for the Shift in Slope

2

il

Autocorrelation*Type of Model 0.11118
Number of Primary Studies 0.09697
Error Variance 0.09252
Type of Model 0.06687
Error Variance*Autocorrelation*Type of Model_ca 0.03199
Error Variance*Type of Model 0.02373
Number of Participants*fix*Error Variance*Autocotation*Type of Model 0.01699
Autocorrelation 0.01528
Series Length*Number of Participants*Error Variatfetocorrelation*Type of Model 0.01513
Number of Participants*Type of Model 0.0132
Fixed Level*Error Variance*Autocorrelation*Type dfodel 0.01297
Number of Primary Studies*Error Variance*Moving Aage*Type of Model 0.01285
Series Length*Number of Primary Studies*Error Vada*the*Type of Model 0.01282
Number of Participants*Autocorrelation*Type of Mdde 0.01212
Series Length 0.01211
Number of Participants*Moving Average*Type of Model 0.01193
Series Length*Error Variance*Moving Average*TypeMbdel 0.01192
Error Variance*Moving Average*Type of Model 0.01189
Series Length*Number of Participants*Moving Aver&bgpe of Model 0.01187
Series Length*Number of Participants*Number of RaignStudies*the*Type of Model 0.01179
Series Length*Number of Primary Studies*Error Vada*Autocorrelation*Type of Model 0.01179
Number of Participants*Number of Primary Studies*Mwg Average*Type of Model 0.01171
Series Length*Type of Model 0.01168
Number of Primary Studies*Type of Model 0.01167
Number of Primary Studies*Error Variance 0.0102
Number of Participants 0.00919
Number of Participants*Number of Primary StudiestiEVariance*Autocorrelation*Type
of Model 0.0081
Series Length*Number of Primary Studies*Autocortiela* Type of Model 0.00796
Series Length*Autocorrelation*Type of Model 0.0077
Number of Primary Studies*Autocorrelation*Type obhtel 0.00762
Series Length*Number of Participants*Type of Model 0.00755
Number of Participants*Error Variance*Type of Model 0.00731
Number of Participants*Fixed Level*Error Variancg/e of Model 0.0069
Number of Participants*Error Variance*Autocorretatt Type of Model 0.00679
Series Length*Number of Primary Studies*Moving Axge*Type of Model 0.00655
Number of Primary Studies*Moving Average*Type of 0.00649
Series Length*Number of Participants*Error Variatthe*Type of Model 0.0063
Number of Participants*Error Variance*Moving Aveet@ype of Model 0.00627
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Table A7 (Continued)

2

il
Number of Primary Studies*fix*Error Variance*Autoeelation*Type of Model 0.0062
Number of Participants*Number of Primary StudiestiE/ariance*the*Type of Model 0.00618
Series Length*fix*Error Variance*Autocorrelation*pg of Model 0.00599
Moving Average*Type of Model 0.00588
Series Length*Moving Average*Type of Model 0.00584
Series Length*Number of Primary Studies*Type of Mbd 0.00576
Error Variance*Autocorrelation 0.00563
Number of Participants*Number of Primary StudiestiEVariance*Type of Model 0.00537
Number of Participants*Number of Primary Studiesp&yof Model 0.00517
Series Length*Number of Participants*Autocorrelatibype of Model 0.005
Number of Participants*Number of Primary Studies*&rror Variance*Type of Model 0.00459
Number of Primary Studies*Error Variance*Type of téb 0.00423
Number of Participants*Number of Primary Studies*fiutocorrelation*Type of Model 0.00418
Series Length*Error Variance*Autocorrelation*TypeModel 0.004144
Series Length*Number of Participants*Number of RuigpnStudies*Type of Model 0.004042
Series Length*Number of Participants*Number of RuiynStudies*Autocorrelation*Type of
Model 0.003828
Series Length*Error Variance*Type of Model 0.003781
Number of Participants*Number of Primary Studiestdeorrelation*Type of Model 0.003736
Number of Primary Studies*Error Variance*Autocoatibn*Type of Model 0.003489
Series Length*Number of Participants*fix*Error Vanice*Type of Model 0.003118
Series Length*Number of Participants 0.002905
Number of Participants*Fixed Level*Error Varianceifcorrelation 0.002869
Fixed Level*Error Variance*Type of Model 0.002852
Series Length*Number of Participants*Number of RagnStudies*Error
Variance*Autocorrelation 0.002671
Series Length*Number of Primary Studies 0.002584
Series Length*Number of Participants*Error Variatfgtocorrelation 0.002504
Series Length*Number of Primary Studies*fix*Autocelation*Type of Model 0.00232
Fixed Level*Error Variance*Autocorrelation 0.002178
Series Length*Number of Primary Studies*Error Vada*Moving Average 0.002164
Number of Primary Studies*Error Variance*Moving Aage 0.002123
Series Length*Number of Participants*Error Variarioge of Model 0.002067
Series Length*Error Variance*Moving Average 0.002014
Number of Participants*Moving Average 0.001995
Number of Participants*Number of Primary Studies 0.00198
Series Length*Number of Participants*Number of RuignStudies*Moving Average 0.001978
Series Length*Number of Participants*Moving Average 0.001973
Number of Participants*Number of Primary Studies*Mwm Average 0.00197
Series Length*Number of Primary Studies*Error Vaga*Autocorrelation 0.001968
Error Variance*Moving Average 0.001964
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Table A7 (Continued)

2

Series Length*Number of Participants*Number of RuignStudies*Error Variance*Type of .
Model 0.001915
Series Length*Fixed Level*Autocorrelation*Type ofddel 0.001864
Number of Participants*Autocorrelation 0.001695
Number of Participants*Number of Primary Studies*&rror Variance*Autocorrelation 0.00148
Number of Participants*Error Variance 0.00138
Number of Participants*Number of Primary StudiestiEN/ariance*Autocorrelation 0.001351
Series Length*Number of Primary Studies*Autocortiela 0.001299
Number of Primary Studies*Fixed Level*Error Variaitype of Model 0.00127
Series Length*Fixed Level*Error Variance*Type of bk 0.001264
Number of Participants*Error Variance*Autocorretati 0.001153
Number of Participants*Fixed Level*Error Variance 0.00113
Series Length*Number of Primary Studies*Moving Axge 0.001126
Number of Primary Studies*Moving Average 0.001105
Series Length*Number of Participants*Error VariatfMeving Average 0.001053
Number of Participants*Error Variance*Moving Averag 0.001052
Number of Primary Studies*Fixed Level*Error Variaiéutocorrelation 0.001041
Series Length*Number of Participants*Number of RuignStudies*Error Variance*Moving

Average 0.001035
Number of Participants*Number of Primary StudiestiEN/ariance*Moving Average 0.001035
Number of Primary Studies*Autocorrelation 0.001033
Series Length*Moving Average 0.001014
Series Length*Fixed Level*Error Variance*Autocogbn 0.000991
Moving Average 0.000986
Series Length*Number of Participants*Number of RuignStudies 0.000984
Series Length*Autocorrelation 0.000965
Series Length*Number of Participants*fix*Error Vanice*Autocorrelation 0.000956
Number of Participants*Number of Primary StudiestiE/ariance 0.000949
Number of Participants*Fixed Level*Autocorrelationype of Model 0.000811
Number of Participants*Number of Primary Studies® Level*Type of Model 0.0008
Series Length*Number of Participants*Number of RuignStudies*fix*Error Variance 0.000766
Series Length*Number of Participants*Autocorrelatio 0.000751
Number of Participants*Number of Primary Studies#d Level*Error Variance 0.000746
Series Length*Error Variance*Autocorrelation 0.000718
Number of Participants*Number of Primary Studies#d Level*Autocorrelation 0.000695
Number of Primary Studies*Fixed Level*Type of Model 0.000653
Series Length*Number of Participants*Number of RuignStudies*Autocorrelation 0.000641
Number of Primary Studies*Error Variance*Autocoatsbn 0.000599
Number of Participants*Number of Primary Studiestéeorrelation 0.000579
Series Length*Number of Participants*Fixed LeveldrVariance 0.000512
Fixed Level*Error Variance 0.000484
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Table A7 (Continued)

2

il
Number of Primary Studies*Fixed Level*AutocorretatiType of Model 0.000446
Number of Participants*Fixed Level*Moving Averageffie of Model 0.000445
Series Length*Number of Primary Studies*Error Vada*Type of Model 0.00044
Series Length*Number of Participants*fix*the*TypéModel 0.000439
Series Length*Number of Primary Studies*Fixed L&@eitocorrelation 0.000384
Number of Primary Studies*fix*Error Variance*the*pg of Model 0.000364
Fixed Level*Type of Model 0.000355
Series Length*Number of Participants*fix*Autocomébn*Type of Model 0.000353
Series Length*fix*Error Variance*the*Type of Model 0.000338
Fixed Level*Autocorrelation*Type of Mode 0.000336
Fixed Level*Error Variance*Moving Average*Type of ddel 0.000327
Series Length*Fixed Level*Autocorrelation 0.000313
Number of Participants*Number of Primary Studies*fihe*Type of Model 0.00028
Series Length*Number of Participants*Number of RaignStudies*Error Variance 0.000275
Series Length*Number of Participants*Error Variance 0.000262
Series Length*Number of Participants*Fixed LevelpEyof Model 0.000258
Series Length*Error Variance 0.000216
Series Length*Fixed Level*Error Variance 0.000211
Number of Primary Studies*Fixed Level*Error Varianc 0.000209
Number of Participants*Number of Primary Studies® Level 0.000141
Number of Participants*fix*Error Variance*the*Typd Model 0.000138
Number of Participants*Fixed Level*Autocorrelation 0.000137
Series Length*Number of Participants*Number of RuignStudies*Fixed
Level*Autocorrelation 0.000136
Series Length*Fixed Level*Moving Average*Type of el 0.000135
Fixed Level*Moving Average*Type of Model 0.000132
Number of Primary Studies*Fixed Level*Moving Aveetd ype of Model 0.000119
Series Length*Number of Primary Studies*fix*the*Tegypf Model 0.000117
Series Length*Number of Participants*Number of RagnStudies*fix*Type of Model 0.000106
Number of Primary Studies*Fixed Level 0.0001
Number of Participants*Fixed Level*Moving Average 7.71E-05
Number of Primary Studies*Fixed Level*Autocorretati 7.42E-05
Series Length*Number of Participants*Fixed Level*itg Average 7.09E-05
Number of Primary Studies*Fixed Level*Error Variaitoving Average 6.21E-05
Series Length*Number of Participants*Fixed LeveltAcorrelation 6.13E-05
Series Length*Number of Primary Studies*fix*ErroaNance*Autocorrelation 6.05E-05
Series Length*Number of Primary Studies*fix*ErroaNance*Moving Average 5.85E-05
Series Length*Fixed Level*Error Variance*Moving Aage 5.73E-05
Fixed Level 5.69E-05
Fixed Level*Error Variance*Moving Average 5.64E-05
Fixed Level*Autocorrelation 5.38E-05
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Table A7 (Continued)

2

il
Number of Participants*Number of Primary Studies#d Level*Moving Average 4.93E-05
Series Length*Number of Participants*Number of RagnStudies*fix*Moving Average 4.6E-05
Number of Participants*Fixed Level*Type of Model 4.44E-05
Number of Participants*Number of Primary Studies*&rror Variance*Moving Average 4.17E-05
Series Length*Number of Participants*Fixed Level 4.08E-05
Series Length*Number of Primary Studies*Error Vaga 3.4E-05
Series Length*Number of Primary Studies*fix*Erroaiance*Type of Model 2.84E-05
Number of Participants*Fixed Level*Error VariancetMing Average 2.23E-05
Series Length*Fixed Level*Moving Average 2.07E-05
Series Length*Number of Participants*fix*Error Vanice*Moving Average 2.05E-05
Fixed Level*Moving Average 2.05E-05
Series Length*Number of Primary Studies*Fixed LéMgving Average 1.9E-05
Series Length*Number of Participants*Number of RuignStudies*Fixed Level 1.9E-05
Number of Primary Studies*Fixed Level*Moving Avermg 1.85E-05
Number of Participants*Fixed Level 9.33E-06
Series Length*Number of Primary Studies*Fixed L&Vgpe of Model 7.77E-06
Series Length*Number of Primary Studies*Fixed Léketor Variance 5.42E-06
Series Length*Number of Primary Studies*Fixed Level 1.35E-06
Series Length*Fixed Level*Type of Model 4.18E-07
Series Length*Fixed Level 6.1E-08
Autocorrelation*Moving Average 0
Series Length*Autocorrelation*Moving Average 0
Number of Participants*Autocorrelation*Moving Avea 0
Series Length*Number of Participants*Autocorrelatidloving Average 0
Number of Primary Studies*Autocorrelation*Moving érage 0
Series Length*Number of Primary Studies*Autocortiela*Moving Average 0
Number of Participants*Number of Primary Studiestdaorrelation*Moving Average 0
Series Length*Number of Participants*Number of RaignStudies*Autocorrelation*Moving
Average 0
Error Variance*Autocorrelation*Moving Average 0
Series Length*Error Variance*Autocorrelation*Movidyerage 0
Number of Participants*Error Variance*AutocorretattMoving Average 0
Series Length*Number of Participants*Error Variaffetocorrelation*Moving Average 0
Number of Primary Studies*Error Variance*Autocoatibn*Moving Average 0
Series Length*Number of Primary Studies*Error Vaga*Autocorrelation*Moving
Average 0
Number of Participants*Number of Primary StudiegtiEr
Variance*Autocorrelation*Moving Average 0
Fixed Level*Autocorrelation*Moving Average 0
Series Length*Fixed Level*Autocorrelation*Moving Avage 0
Number of Participants*Fixed Level*Autocorrelatidvibving Average 0
Series Length*Number of Participants*fix*Autocomébn*Moving Average 0
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Table A7 (Continued)

Number of Primary Studies*Fixed Level*AutocorretatrtMoving Average
Series Length*Number of Primary Studies*fix*Autoceliation*Moving Average
Number of Participants*Number of Primary Studies*fiutocorrelation*Moving Average
Fixed Level*Error Variance*Autocorrelation*Movingverage

Series Length*fix*Error Variance*Autocorrelation*Mang Average

Number of Participants*fix*Error Variance*Autocotation*Moving Average
Number of Primary Studies*fix*Error Variance*Autocelation*Moving Average
Autocorrelation*Moving Average*Type of Model

Series Length*Autocorrelation*Moving Average*TypéModel

Number of Participants*Autocorrelation*Moving AveetType of Model

Series Length*Number of Participants*Autocorrelatitne*Type of Model
Number of Primary Studies*Autocorrelation*Moving érage*Type of Model
Series Length*Number of Primary Studies*Autocortiela*the*Type of Model
Number of Participants*Number of Primary Studiestdeorrelation*the*Type of Model
Error Variance*Autocorrelation*Moving Average*Tymd Model

Series Length*Error Variance*Autocorrelation*the*ig of Model

Number of Participants*Error Variance*Autocorretatfthe*Type of Model
Number of Primary Studies*Error Variance*Autocoatbn*the*Type of Model
Fixed Level*Autocorrelation*Moving Average*Type dlodel

Series Length*fix*Autocorrelation*the*Type of Model

Number of Participants*fix*Autocorrelation*the*Typaf Model

Number of Primary Studies*fix*Autocorrelation*theype of Model

fix*Error Variance*Autocorrelation*the*Type of Mode

=
Co0®P0 500 ,0p00°9 0000 0®

Total Explained 0.9457
Table A8
Eta-Squared Values){)for the Association of the Design Factors with Bwver Estimates for the Shift
in Level

n2
Error Variance 0.30027
Number of Primary Studies 0.2993
Number of Primary Studies*Error Variance 0.29828
Number of Participants 0.02225
Number of Participants*Number of Primary Studies 0.02225
Number of Participants*Error Variance 0.02192
Series Length*Number of Primary Studies 0.00184
Series Length 0.00179
Series Length*Error Variance 0.00174
Number of Primary Studies*Autocorrelation 0.0006
Error Variance*Autocorrelation 0.00045

256

www.manaraa.com



Table A8 (Continued)

2

n
Autocorrelation 0.00044
Series Length*Number of Participants 0.00039
Autocorrelation*Type of Model 0.0002
Number of Participants*Moving Average 0.00017
Type of Model 0.00015
Series Length*Moving Average 0.00013
Error Variance*Type of Model 0.00012
Series Length*Autocorrelation 0.00011
Number of Participants*Autocorrelation 0.00006
Number of Primary Studies*Type of Model 0.00005
Number of Participants*Type of Model 0.00002
Moving Average 0.00002
Number of Primary Studies*Moving Average 0.00002
Error Variance*Moving Average 0.00001
Series Length*Type of Model 0.00001
Moving Average*Type of Model 0
Autocorrelation*Moving Average 0
Total Explained 0.9726
Table A9
Eta-Squared Values)})for the Association of the Design Factors with Bwver Estimates for the Shift
in Slope

n2
Number of Primary Studies 0.51153
Error Variance 0.41569
Series Length 0.03141
Number of Participants 0.01529
Autocorrelation 0.00129
Type of Model 0.00002
Moving Average 0.00001
Total Explained 0.9752
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Table A10

Eta-Squared Values){) for the Association of the Design Factors with Bias Estimates for the Level-

three Phase Effect

2

n
Error Variance 0.096415
Number of Primary Studies 0.093087
Type of Model 0.091423
Error Variance*Type of Model 0.04376
Number of Participants 0.042611
Number of Participants*Number of Primary Studies 0.041102
Number of Primary Studies*Error Variance 0.034378
Autocorrelation*Type of Model 0.031906
Number of Participants*Error Variance 0.02619
Number of Primary Studies*Fixed Level*Error Variaitoving Average 0.018903
Series Length 0.018586
Series Length*Number of Participants*Number of RuignStudies 0.016809
Error Variance*Autocorrelation*Type of Model 0.01632
Autocorrelation 0.016299
Number of Primary Studies*Fixed Level*Autocorretati 0.016202
Series Length*Number of Participants*Autocorrelatio 0.015133
Error Variance*Autocorrelation 0.014939
Number of Participants*Number of Primary Studies*Mwm Average 0.013593
Series Length*Number of Primary Studies*Fixed Lé&ketor Variance 0.012667
Number of Participants*Number of Primary Studiextd Level 0.012435
Number of Primary Studies*Error Variance*Autocoatsbn 0.011813
Number of Participants*Moving Average 0.010852
Series Length*Type of Model 0.010326
Number of Primary Studies*Fixed Level 0.010182
Series Length*Error Variance 0.009611
Number of Participants*Fixed Level*Error VariancetMing Average 0.009564
Number of Participants*Number of Primary Studiestdeorrelation 0.009294
Number of Primary Studies*Fixed Level*Moving Averg 0.009152
Number of Participants*Fixed Level*Autocorrelation 0.008815
Fixed Level 0.007961
Number of Participants*Number of Primary Studies#d Level*Moving Average 0.007297
Series Length*Number of Primary Studies 0.00627
Number of Primary Studies*Fixed Level*Error Varianc 0.00603
Number of Participants*Number of Primary StudiestiE/ariance*Moving Average 0.005729
Series Length*Number of Primary Studies*Error Vaga*Moving Average 0.005603
Series Length*Number of Primary Studies*Fixed Level 0.00558
Number of Participants*Type of Model 0.005553
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Table A10 (Continued)

2

il
Series Length*Error Variance*Type of Model 0.005291
Series Length*Number of Primary Studies*Fixed LéMgving Average 0.005287
Fixed Level*Error Variance 0.005131
Series Length*Number of Participants*Number of RaignStudies*Fixed Level 0.004597
Series Length*Number of Participants 0.004596
Fixed Level*Error Variance*Moving Average 0.0042
Series Length*Number of Primary Studies*Error Vada 0.004134
Series Length*Error Variance*Moving Average 0.004083
Number of Participants*Number of Primary StudiestiE/ariance 0.004025
Series Length*Fixed Level*Autocorrelation 0.003922
Number of Participants*Error Variance*Autocorretati 0.0039
Number of Participants*Autocorrelation*Type of Mdde 0.003842
Number of Participants*Error Variance*Type of Model 0.003828
Series Length*Number of Participants*Number of RagnStudies*Autocorrelation 0.003815
Number of Participants*Number of Primary Studies#d Level*Autocorrelation 0.003713
Series Length*Fixed Level*Error Variance*Autocomgbn 0.003572
Series Length*Autocorrelation*Type of Model 0.003385
Number of Primary Studies*Fixed Level*Error Variaiéutocorrelation 0.003128
Series Length*Error Variance*Autocorrelation 0.003094
Series Length*Number of Participants*Fixed Level 0.003053
Series Length*Number of Primary Studies*Autocortiela 0.002959
Series Length*Autocorrelation 0.002831
Series Length*Number of Participants*Error Variarfsatocorrelation 0.002515
Series Length*Moving Average 0.002417
Number of Participants*Number of Primary Studies#d Level*Error Variance 0.002409
Series Length*Number of Primary Studies*Error Vaga*Autocorrelation 0.002364
Number of Participants*Fixed Level*Error Variance .002323
Fixed Level*Autocorrelation 0.002187
Number of Participants*Number of Primary StudiestiEVariance*Autocorrelation 0.002022
Number of Primary Studies*Autocorrelation 0.001915
Moving Average 0.001882
Number of Primary Studies*Moving Average 0.00176
Series Length*Number of Primary Studies*Fixed L&geitocorrelation 0.001723
Number of Participants*Autocorrelation 0.001558
Number of Primary Studies*Error Variance*Moving Aage 0.001348
Fixed Level*Moving Average 0.001296
Series Length*Number of Participants*Number of RuignStudies*Moving Average 0.001221
Series Length*Error Variance*Autocorrelation*fixed 0.00116
Number of Participants*Error Variance*Autocorretattfixed 0.001109
Number of Participants*Error Variance*Moving Averg 0.001084
Series Length*Number of Participants*Type of Model 0.001073
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Table A10 (Continued)

2

il
Error Variance*Moving Average 0.001061
Number of Participants*Fixed Level*Moving Average .001009
Fixed Level*Error Variance*Autocorrelation*fixed 0.000917
Fixed Level*Error Variance*Autocorrelation 0.000902
Series Length*Number of Participants*Fixed Level*¥luy Average 0.000829
Number of Primary Studies*Error Variance*Type of téb 0.000811
Series Length*Number of Participants*Error Variatddeving Average 0.000753
Number of Participants*Number of Primary Studiestdeorrelation*fixed 0.000705
Series Length*Fixed Level*Error Variance*Moving Avage 0.000686
Series Length*Fixed Level*Moving Average 0.000674
Series Length*Number of Participants*Moving Average 0.000651
Number of Participants*Fixed Level 0.000629
Number of Participants*Fixed Level*Error Varianceifdcorrelation 0.000556
Number of Participants*Number of Primary Studiespy&yof Model 0.000511
Series Length*Number of Primary Studies*Moving Axge 0.000479
Series Length*Number of Participants*Fixed LeveldrVariance 0.000475
Number of Participants*Fixed Level*Autocorrelatidixed 0.000412
Series Length*Number of Participants*Number of RaignStudies*Error Variance 0.000389
Series Length*Number of Primary Studies*Autocortiela*fixed 0.000351
Number of Primary Studies*Autocorrelation*Type obhtel 0.000339
Number of Primary Studies*Fixed Level*Type of Model 0.000328
Number of Primary Studies*Error Variance*Moving Aage*fixed 0.000315
Number of Primary Studies*Type of Model 0.000303
Number of Primary Studies*Moving Average*Type of 0.000256
Total Explained 0.9465

Table Al11

Eta-Squared Values)) for the Association of the Design Factors with Bias Estimates for the Level-

three Interaction Effect

2

n
Type of Model 0.14873
Series Length 0.11207
Series Length*Type of Model 0.06868
Error Variance 0.05991
Autocorrelation*Type of Model 0.05601
Error Variance*Type of Model 0.04917
Series Length*Error Variance 0.04066
Number of Participants 0.03706
Number of Primary Studies 0.0361
Series Length*Number of Primary Studies 0.03274
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Table A1l (Continued)

2

n

Series Length*Autocorrelation*Type of Model 0.03112
Error Variance*Autocorrelation*Type of Model 0.02632
Number of Participants*Number of Primary Studies 0.02151
Number of Participants*Error Variance 0.02102
Series Length*Number of Participants 0.02091
Series Length*Error Variance*Type of Model 0.02022
Autocorrelation 0.01911
Series Length*Number of Primary Studies*Error Vaga 0.01439
Number of Primary Studies*Error Variance 0.01277
Series Length*Number of Participants*Error Variance 0.01165
Series Length*Number of Participants*Number of RuignStudies 0.01122
Number of Participants*Number of Primary StudiestiE/ariance 0.01001
Series Length*Autocorrelation 0.00375
Number of Primary Studies*Autocorrelation 0.00365
Series Length*Number of Participants*Autocorrelatio 0.0034
Error Variance*Autocorrelation 0.00339
Number of Participants*Fixed Level 0.0033
Series Length*Number of Primary Studies*Autocortiela 0.00322
Number of Primary Studies*Moving Average 0.00311
Series Length*Moving Average 0.00288
Number of Primary Studies*Error Variance*Autocoatibn 0.00286
Series Length*Error Variance*Autocorrelation 0.00276
Number of Participants*Number of Primary Studiestdeorrelation 0.00237
Number of Participants*Number of Primary Studies'Mwm Average 0.00233
Series Length*Error Variance*Moving Average 0.00232
Number of Participants*Type of Model 0.00212
Number of Participants*Number of Primary Studiex®#d Level 0.00211
Number of Primary Studies*Fixed Level 0.00206
Series Length*Number of Primary Studies*Type of Mbd 0.00198
Series Length*Number of Primary Studies*Moving Axge 0.00187
Number of Primary Studies*Type of Model 0.00173
Number of Participants*Number of Primary Studiespy&yof Model 0.00172
Fixed Level*Error Variance*Autocorrelation 0.00169
Number of Participants*Autocorrelation*Type of Mdde 0.00157
Number of Primary Studies*Error Variance*Moving Aage 0.00155
Number of Primary Studies*Error Variance*Type of téb 0.00137
Number of Participants*Fixed Level*Autocorrelation 0.00132
Series Length*Fixed Level*Autocorrelation 0.00129
Number of Participants*Fixed Level*Error Variance .00124
Fixed Level*Autocorrelation 0.00122
Number of Primary Studies*Autocorrelation*Type obhtel 0.00121
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Table A1l (Continued)

2

n

Series Length*Fixed Level*Moving Average 0.001182
Fixed Level*Moving Average 0.00116
Fixed Level*Error Variance*Moving Average 0.000989
Series Length*Number of Primary Studies*Fixed Level 0.000957
Error Variance*Moving Average 0.000894
Number of Primary Studies*Fixed Level*Autocorretati 0.000706
Number of Participants*Error Variance*Moving Averag 0.000682
Series Length*Number of Participants*Fixed Level 0.000608
Series Length*Number of Participants*Moving Average 0.000412
Series Length*Fixed Level*Error Variance 0.000369
Series Length*Number of Participants*Type of Model 0.000364
Number of Participants*Autocorrelation 0.000302
Number of Participants*Error Variance*Autocorretati 0.000247
Number of Participants*Moving Average 0.000199
Number of Participants*Error Variance*Type of Model 0.000195
Number of Participants*Fixed Level*Moving Average .000183
Fixed Level*Moving Average*Type of Model 0.000119
Fixed Level*Error Variance 0.000118
Number of Primary Studies*Fixed Level*Moving Averg 0.000108
Number of Primary Studies*Fixed Level*Type of Model 9.86E-05
Fixed Level 7.97E-05
Fixed Level*Type of Model 6.24E-05
Fixed Level*Autocorrelation*Type of Model 5.91E-05
Series Length*Moving Average*Type of Model 5.08E-05
Fixed Level*Error Variance*Type of Model 5.07E-05
Number of Participants*Moving Average*Type of Model 4.11E-05
Error Variance*Moving Average*Type of Model 2.94E-05
Number of Primary Studies*Moving Average*Type of 2.37E-05
Series Length*Fixed Level*Type of Model 2.16E-05
Number of Primary Studies*Fixed Level*Error Varianc 1.99E-05
Number of Participants*Fixed Level*Type of Model 86E-05
Moving Average*Type of Model 1.6E-05
Moving Average 6.91E-06
Series Length*Fixed Level 5.14E-06
Autocorrelation*Moving Average 0
Series Length*Autocorrelation*Moving Average 0
Number of Participants*Autocorrelation*Moving Avea 0
Number of Primary Studies*Autocorrelation*Moving érage 0
Error Variance*Autocorrelation*Moving Average 0
Fixed Level*Autocorrelation*Moving Average 0
Autocorrelation*Moving Average*Type of Model 0
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Total Explained

0.9371

Table A12

Eta-Squared Values){)for the Association of the Design Factors with Bias Estimates for the Level-

two Phase Effect

2

n

Type of Model 0.55782
Autocorrelation*Type of Model 0.22198
Error Variance*Autocorrelation 0.04332
Error Variance*Type of Model 0.04332
Error Variance*Autocorrelation*Type of Model 0.0431
Autocorrelation 0.04129
Series Length*Error Variance 0.00251
Number of Primary Studies*Fixed Level*Moving Averg 0.00238
Series Length*Number of Primary Studies 0.00191
Number of Participants*Error Variance 0.00184
Fixed Level*Error Variance 0.00151
Number of Participants*Fixed Level*Autocorrelation 0.00142
Fixed Level 0.00116
Series Length*Fixed Level*Moving Average 0.0011
Series Length*Number of Participants 0.00107
Number of Participants*Fixed Level*Error Variance .00106
Fixed Level*Error Variance*Autocorrelation 0.00099
Fixed Level*Autocorrelation 0.00085
Error Variance*Moving Average 0.00082
Number of Participants*Fixed Level 0.00082
Series Length*Autocorrelation*Type of Model 0.00076
Number of Participants*Number of Primary Studies 0.00065
Series Length*Error Variance*Autocorrelation 0.00063
Number of Primary Studies*Error Variance 0.00062
Fixed Level*Error Variance*Moving Average 0.00057
Series Length*Number of Participants*Moving Average 0.00054
Number of Participants*Number of Primary Studies'Mwm Average 0.00052
Number of Participants*Moving Average*Type of Model 0.0005
Series Length*Fixed Level 0.00049
Series Length*Number of Primary Studies*Autocortiela 0.00048
Number of Primary Studies*Moving Average 0.00048
Number of Primary Studies*Autocorrelation 0.00046
Fixed Level*Moving Average*Type of Model 0.00043
Moving Average*Type of Model 0.00039
Number of Participants*Error Variance*Autocorretati 0.00039
Number of Primary Studies*Autocorrelation*Type obhtel 0.00039
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Table A12 (Continued)

2

M

Series Length*Number of Participants*Type of Model 0.00037
Number of Participants*Autocorrelation 0.00036
Number of Participants*Number of Primary Studiestdeorrelation 0.00035
Number of Participants*Fixed Level*Moving Average .00035
Number of Participants*Autocorrelation*Type of Mdde 0.00034
Number of Primary Studies*Error Variance*Type of téb 0.00033
Number of Participants*Error Variance*Type of Model 0.00031
Series Length*Fixed Level*Autocorrelation 0.00029
Number of Primary Studies*Error Variance*Autocoatibn 0.00027
Series Length*Type of Model 0.00027
Number of Participants*Number of Primary Studiesp&yof Model 0.00027
Moving Average 0.00025
Number of Participants*Error Variance*Moving Averag 0.00024
Series Length*Number of Participants*Fixed Level 0.00023
Number of Primary Studies*Moving Average*Type of thgd 0.00023
Number of Primary Studies*Type of Model 0.000217
Fixed Level*Moving Average 0.000217
Number of Primary Studies*Error Variance*Moving Aage 0.000216
Number of Participants*Number of Primary Studiextd Level 0.000216
Fixed Level*Error Variance*Type of Model 0.000185
Series Length*Autocorrelation 0.000182
Fixed Level*Autocorrelation*Type of Model 0.000173
Error Variance*Moving Average*Type of Model 0.00017
Series Length*Moving Average*Type of Model 0.000167
Number of Participants*Moving Average 0.000165
Fixed Level*Type of Model 0.000157
Series Length 0.000148
Series Length*Number of Participants*Error Variance 0.000139
Number of Participants*Fixed Level*Type of Model 000127
Number of Participants*Number of Primary StudiestiEVariance 0.000119
Series Length*Number of Primary Studies*Moving Axge 0.000103
Series Length*Fixed Level*Error Variance 0.000101
Number of Participants*Type of Model 9.7E-05
Series Length*Error Variance*Type of Model 9.67E-05
Series Length*Number of Primary Studies*Type of Mbd 8.87E-05
Number of Primary Studies*Fixed Level*Type of Model 7.72E-05
Series Length*Number of Participants*Autocorrelatio 6.92E-05
Number of Primary Studies 6.42E-05
Series Length*Fixed Level*Type of Model 5.55E-05
Series Length*Number of Participants*Number of RagnStudies 4.84E-05
Series Length*Moving Average 4.66E-05
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Table A12 (Continued)

2

M
Number of Primary Studies*Fixed Level*Autocorretati 3.32E-05
Number of Primary Studies*Fixed Level*Error Varianc 3.05E-05
Series Length*Error Variance*Moving Average 2.14E-05
Error Variance 9.18E-06
Number of Primary Studies*Fixed Level 2.93E-06
Series Length*Number of Primary Studies*Fixed Level 1.5E-06
Number of Participants 9.9E-07
Series Length*Number of Primary Studies*Error Vaga 5.59E-07
Autocorrelation*Moving Average 0

Series Length*Autocorrelation*Moving Average 0
Number of Participants*Autocorrelation*Moving Aveya 0
Number of Primary Studies*Autocorrelation*Moving érage 0
Error Variance*Autocorrelation*Moving Average 0
Fixed Level*Autocorrelation*Moving Average 0
Autocorrelation*Moving Average*Type of Model 0

Total Explained 0.9866

Table A13
Eta-Squared Values)) for the Association of the Design Factors with Bias Estimates for the Level-
two Interaction Effect

2

M

Type of Model 0.44809
Autocorrelation*Type of Model 0.19139
Series Length*Error Variance*Autocorrelation 0.06297
Series Length*Error Variance*Type of Model 0.05562
Autocorrelation 0.0304
Series Length*Autocorrelation*Type of Model 0.02342
Series Length*Type of Model 0.01366
Series Length*Number of Participants*Error Variance 0.01311
Series Length*Number of Primary Studies*Error Vada 0.0127
Series Length*Number of Primary Studies 0.01141
Error Variance*Autocorrelation*Type of Model 0.01079
Series Length*Number of Participants 0.00956
Number of Primary Studies*Error Variance 0.00908
Number of Participants*Error Variance 0.00838
Series Length*Number of Participants*Number of RuignStudies 0.00749
Series Length*Error Variance 0.00692
Error Variance*Type of Model 0.0065
Series Length*Number of Primary Studies*Autocortiela 0.00506
Number of Primary Studies*Autocorrelation 0.00489
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Table A13 (Continued)

2

M

Number of Primary Studies 0.00334
Number of Primary Studies*Type of Model 0.00306
Number of Participants*Number of Primary Studies 00306
Error Variance*Autocorrelation 0.00303
Number of Participants*Number of Primary StudiestiE/ariance 0.00269
Number of Participants 0.00258
Series Length*Autocorrelation 0.00246
Fixed Level*Autocorrelation 0.00201
Number of Primary Studies*Error Variance*Autocoatibn 0.00201
Number of Participants*Error Variance*Autocorretati 0.00147
Number of Primary Studies*Autocorrelation*Type obhtel 0.00143
Number of Participants*Fixed Level*Error Variance .00139
Number of Participants*Type of Model 0.00129
Series Length*Number of Primary Studies*Type of Mbd 0.00125
Series Length*Number of Participants*Autocorrelatio 0.00118
Number of Participants*Number of Primary Studiestdeorrelation 0.0011
Number of Participants*Autocorrelation 0.0011
Error Variance 0.00109
Fixed Level 0.00095
Moving Average 0.00088
Fixed Level*Moving Average 0.00076
Series Length*Fixed Level*Moving Average 0.00069
Series Length*Number of Participants*Type of Model 0.00066
Number of Participants*Autocorrelation*Type of Mdde 0.00058
Number of Participants*Number of Primary Studiesp&yof Model 0.00046
Series Length*Number of Primary Studies*Moving Axge 0.00044
Series Length 0.00042
Number of Primary Studies*Fixed Level*Autocorretati 0.00039
Series Length*Fixed Level*Autocorrelation 0.00036
Series Length*Moving Average 0.00036
Series Length*Number of Participants*Moving Average 0.00025
Number of Primary Studies*Fixed Level*Moving Avermg 0.00025
Number of Primary Studies*Error Variance*Moving Aage 0.000235
Number of Primary Studies*Fixed Level 0.000231
Number of Participants*Fixed Level*Autocorrelation 0.0002
Number of Primary Studies*Error Variance*Type of téb 0.000197
Number of Primary Studies*Moving Average 0.000192
Number of Participants*Moving Average 0.000178
Number of Participants*Number of Primary Studiextd Level 0.000167
Fixed Level*Error Variance*Moving Average 0.000166
Fixed Level*Error Variance*Autocorrelation 0.000162
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Table A13 (Continued)

2

M
Series Length*Fixed Level*Error Variance 0.000113
Number of Participants*Number of Primary Studies'Mwm Average 9.52E-05
Number of Primary Studies*Fixed Level*Error Varianc 8.31E-05
Series Length*Error Variance*Moving Average 7.62E-05
Number of Participants*Fixed Level*Moving Average .68E-05
Number of Participants*Error Variance*Type of Model 6.2E-05
Series Length*Number of Participants*Fixed Level 3%E-05
Number of Participants*Fixed Level 4.88E-05
Number of Participants*Error Variance*Moving Averag 4.27E-05
Error Variance*Moving Average 2.77E-05
Fixed Level*Error Variance*Type of Model 2.11E-05
Number of Participants*Fixed Level*Type of Model 02E-05
Fixed Level*Moving Average*Type of Model 1.8E-05
Fixed Level*Autocorrelation*Type of Model 1.67E-05
Number of Primary Studies*Moving Average*Type of thgd 1.53E-05
Moving Average*Type of Model 1.33E-05
Series Length*Fixed Level*Type of Model 1.04E-05
Number of Primary Studies*Fixed Level*Type of Model 1.04E-05
Number of Participants*Moving Average*Type of Model 1.01E-05
Error Variance*Moving Average*Type of Model 8.5E-06
Series Length*Moving Average*Type of Model 8.07E-06
Fixed Level*Type of Model 6.65E-06
Fixed Level*Error Variance 1.67E-06
Series Length*Fixed Level 1.25E-07
Series Length*Number of Primary Studies*Fixed Level 1.1E-07
Autocorrelation*Moving Average 0
Series Length*Autocorrelation*Moving Average 0
Number of Participants*Autocorrelation*Moving Avea 0
Number of Primary Studies*Autocorrelation*Moving érage 0
Error Variance*Autocorrelation*Moving Average 0
Fixed Level*Autocorrelation*Moving Average 0
Autocorrelation*Moving Average*Type of Model 0
Total Explained 0.9770
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Table Al14

Eta-Squared Values)y) for the Association of the Design Factors with Bias Estimates for the

Autocorrelation Parameter

2

il
Autocorrelation*Type of Model 0.24284
Error Variance*Autocorrelation*Type of Model 0.12234
Error Variance*Type of Model 0.08035
Type of Model 0.07695
Error Variance*Autocorrelation 0.06308
Autocorrelation 0.06018
Error Variance 0.05549
Series Length 0.03203
Series Length*Autocorrelation*Type of Model 0.03044
Series Length*Type of Model 0.02916
Series Length*Error Variance*Autocorrelation 0.01736
Series Length*Autocorrelation 0.01645
Number of Primary Studies*Autocorrelation*Type obhtel 0.01219
Number of Primary Studies*Autocorrelation 0.01033
Number of Primary Studies*Error Variance*Type of téb 0.00951
Number of Participants*Error Variance*Type of Model 0.00899
Number of Primary Studies*Error Variance 0.00782
Series Length*Error Variance*Type of Model 0.00753
Series Length*Number of Primary Studies 0.00679
Number of Participants*Error Variance 0.00605
Series Length*Number of Primary Studies*Type of Mbd 0.00393
Number of Primary Studies*Type of Model 0.00364
Number of Participants*Autocorrelation*Type of Mdde 0.00346
Series Length*Number of Primary Studies*Autocortiela 0.00341
Series Length*Number of Participants 0.00338
Number of Participants*Autocorrelation 0.00333
Number of Primary Studies*Error Variance*Autocoatibn 0.0029
Number of Participants*Error Variance*Autocorretati 0.00276
Series Length*Number of Participants*Autocorrelatio 0.00191
Series Length*Number of Participants*Number of RaignStudies 0.0018
Series Length*Number of Participants*Type of Model 0.00159
Series Length*Error Variance 0.00151
Number of Participants*Number of Primary Studiestéeorrelation 0.0013
Number of Participants*Type of Model 0.00129
Number of Participants*Number of Primary Studies 00094
Number of Participants*Number of Primary Studiespy€yof Model 0.00078
Number of Participants 0.00063
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Table Al14 (Continued)

2

il
Number of Primary Studies 0.00042
Number of Participants*Fixed Level*Autocorrelation 0.00034
Fixed Level*Autocorrelation*Type of Model 0.00027
Number of Participants*Number of Primary StudiestiE/ariance 0.00022
Number of Participants*Error Variance*Moving Averag 0.00017
Fixed Level*Autocorrelation 0.00017
Fixed Level*Error Variance*Moving Average 0.00015
Series Length*Number of Participants*Error Variance 0.00012
Series Length*Number of Participants*Fixed Level 012
Series Length*Fixed Level*Type of Model 0.00011
Fixed Level*Moving Average 0.00011
Series Length*Fixed Level*Moving Average 0.00008
Series Length*Fixed Level*Error Variance 0.00008
Number of Participants*Number of Primary Studies'Mwm Average 0.00007
Number of Participants*Moving Average 6.23E-05
Fixed Level*Error Variance*Autocorrelation 4.63E-05
Moving Average 4.59E-05
Series Length*Error Variance*Moving Average 4.5E-05
Number of Primary Studies*Fixed Level*Error Varianc 4.45E-05
Number of Primary Studies*Fixed Level*Autocorretati 4.33E-05
Number of Primary Studies*Fixed Level*Moving Averg 3.96E-05
Error Variance*Moving Average 3.29E-05
Number of Primary Studies*Moving Average 2.89E-05
Number of Participants*Moving Average*Type of Model 2.54E-05
Number of Participants*Fixed Level*Moving Average A2E-05
Fixed Level*Moving Average*Type of Model 2.31E-05
Number of Participants*Number of Primary Studiextd Level 2.22E-05
Number of Primary Studies*Moving Average*Type of 2.15E-05
Series Length*Fixed Level 1.74E-05
Series Length*Number of Primary Studies*Moving Axge 1.71E-05
Series Length*Number of Participants*Moving Average 1.64E-05
Moving Average*Type of Model 1.47E-05
Number of Participants*Fixed Level*Error Variance .28E-05
Series Length*Moving Average 1.13E-05
Series Length*Moving Average*Type of Model 1.09E-05
Fixed Level*Error Variance*Type of Model 9.86E-06
Fixed Level 6.63E-06
Error Variance*Moving Average*Type of Model 5.6E-06
Fixed Level*Type of Model 5.09E-06
Series Length*Number of Primary Studies*Fixed Level 4.76E-06
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Table A14 (Continued)

2

M
Number of Primary Studies*Fixed Level*Type of Model 4.46E-06
Series Length*Fixed Level*Autocorrelation 2.9E-06
Number of Primary Studies*Fixed Level 2.63E-06
Number of Participants*Fixed Level 2.13E-06
Number of Participants*Fixed Level*Type of Model 08E-06
Number of Primary Studies*Error Variance*Moving Aage 1.83E-06
Fixed Level*Error Variance 4.26E-07
Series Length*Number of Primary Studies*Error Vaga 2.16E-07
Autocorrelation*Moving Average 0

Series Length*Autocorrelation*Moving Average 0
Number of Participants*Autocorrelation*Moving Aveya 0
Number of Primary Studies*Autocorrelation*Moving érage 0
Error Variance*Autocorrelation*Moving Average 0
Fixed Level*Autocorrelation*Moving Average 0
Autocorrelation*Moving Average*Type of Model 0

Total Explained 0.9375

Table A15
Eta-Squared Values)) for the Association of the Design Factors with Bias Estimates for the
Autocorrelation Parameter

2

n
Moving Average 0.60692
Type of Model 0.27378
Autocorrelation 0.05027
Error Variance 0.00217
Number of Primary Studies 0.00176
Series Length 0.00071
Number of Participants 0.00049
Fixed Level 0
Total Explained 0.9361
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Table A16
Eta-Squared Values)J) for the Association of the Design Factors wita RIMSE Values for the Level-
three Phase Effect

2

n
Error Variance 0.70311
Number of Primary Studies 0.2014
Number of Participants 0.02262
Series Length 0.00304
Autocorrelation 0.00018
Type of Model 0.00003
Moving Average 0.00002
Fixed Level 0
Total Explained 0.9304
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Table A17

Eta-Squared Values)) for the Association of the Design Factors with RMSE Values for the Level-

three Interaction Effect

2

n
Error Variance 0.66677
Number of Primary Studies 0.1979
Number of Primary Studies*Error Variance 0.05293
Series Length 0.03996
Number of Participants 0.02858
Number of Participants*Error Variance 0.00361
Series Length*Number of Participants 0.00326
Autocorrelation 0.00157
Number of Participants*Number of Primary Studies 0.00113
Series Length*Error Variance 0.001
Series Length*Number of Primary Studies 0.00071
Series Length*Autocorrelation 0.0003
Number of Participants*Autocorrelation 0.00029
Number of Primary Studies*Autocorrelation 0.00011
Error Variance*Autocorrelation 0.00006
Autocorrelation*Type of Model 0.00003
Type of Model 0.00003
Series Length*Fixed Level 0.00002
Series Length*Type of Model 0.00002
Fixed Level*Error Variance 0.00001
Number of Participants*Moving Average 0.00001
Series Length*Moving Average 0.00001
Fixed Level*Autocorrelation 0
Number of Participants*Type of Model 0
Moving Average 0
Error Variance*Type of Model 0
Error Variance*Moving Average 0
Fixed Level 0
Number of Participants*Fixed Level 0
Number of Primary Studies*Type of Model 0
Fixed Level*Type of Model 0
Moving Average*Type of Model 0
Fixed Level*Moving Average 0
Number of Primary Studies*Fixed Level 0
Number of Primary Studies*Moving Average 0
Autocorrelation*Moving Average 0
Total Explained 0.9983
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Table A18

Eta-Squared Values)) for the Association of the Design Factors with RMSE Values for the Level-

two Phase Effect

2

il
Error Variance 0.4326
Number of Primary Studies 0.222
Number of Participants 0.12348
Type of Model 0.04868
Autocorrelation*Type of Model 0.03792
Number of Primary Studies*Error Variance 0.02838
Number of Participants*Error Variance 0.02444
Autocorrelation 0.01483
Series Length 0.00974
Number of Participants*Number of Primary Studies 0.00554
Series Length*Autocorrelation 0.00209
Series Length*Number of Participants 0.00202
Series Length*Error Variance 0.00128
Number of Primary Studies*Type of Model 0.00113
Series Length*Type of Model 0.00095
Number of Participants*Autocorrelation 0.00068
Number of Participants*Type of Model 0.00061
Error Variance*Type of Model 0.00048
Fixed Level 0.0004
Moving Average*Type of Model 0.00037
Fixed Level*Autocorrelation 0.00034
Error Variance*Autocorrelation 0.00033
Fixed Level*Type of Model 0.0002
Number of Primary Studies*Autocorrelation 0.00018
Error Variance*Moving Average 0.00015
Moving Average 0.00011
Number of Participants*Moving Average 0.00008
Fixed Level*Moving Average 0.00005
Series Length*Moving Average 0.00005
Number of Participants*Fixed Level 0.00004
Series Length*Fixed Level 0.00004
Number of Primary Studies*Moving Average 0.00004
Number of Primary Studies*Fixed Level 0.00002
Series Length*Number of Primary Studies 0.00001
Fixed Level*Error Variance 0
Autocorrelation*Moving Average 0
Total Explained 0.9593
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Table A19

Eta-Squared Values)) for the Association of the Design Factors with RMSE Values for the Level-

two Interaction Effect

2

il
Error Variance 0.34932
Series Length 0.25701
Number of Primary Studies 0.12644
Number of Participants 0.07658
Type of Model 0.03065
Number of Primary Studies*Error Variance 0.02454
Autocorrelation 0.02302
Autocorrelation*Type of Model 0.02286
Series Length*Error Variance 0.0201
Number of Participants*Error Variance 0.01497
Series Length*Type of Model 0.01144
Series Length*Number of Primary Studies 0.0082
Series Length*Number of Participants 0.00653
Series Length*Autocorrelation 0.00533
Number of Participants*Number of Primary Studies 0.00423
Error Variance*Autocorrelation 0.00133
Number of Primary Studies*Type of Model 0.00074
Error Variance*Type of Model 0.00041
Number of Participants*Type of Model 0.00033
Number of Participants*Autocorrelation 0.00011
Number of Primary Studies*Autocorrelation 0.00009
Fixed Level 0.00004
Number of Primary Studies*Fixed Level 0.00001
Number of Participants*Moving Average 0.00001
Moving Average 0.00001
Error Variance*Moving Average 0.00001
Fixed Level*Moving Average 0.00001
Fixed Level*Autocorrelation 0
Series Length*Moving Average 0
Moving Average*Type of Model 0
Series Length*Fixed Level 0
Fixed Level*Error Variance 0
Number of Participants*Fixed Level 0
Number of Primary Studies*Moving Average 0
Fixed Level*Type of Model 0
Autocorrelation*Moving Average 0
Total Explained 0.9843

274

www.manaraa.com



Table A20

Eta-Squared Values)) for the Association of the Design Factors with RMSE Values for the Level-

one Variance

2

n

Type of Model 0.20268
Error Variance 0.17296
Error Variance*Type of Model 0.10587
Autocorrelation*Type of Model 0.0703
Series Length 0.06046
Number of Primary Studies 0.05264
Error Variance*Autocorrelation*Type of Model 0.05095
Autocorrelation 0.04265
Error Variance*Autocorrelation 0.03552
Series Length*Autocorrelation 0.02984
Number of Participants 0.02013
Number of Primary Studies*Type of Model 0.01596
Number of Primary Studies*Error Variance 0.01467
Series Length*Error Variance 0.01364
Series Length*Error Variance*Autocorrelation 0.01362
Series Length*Autocorrelation*Type of Model 0.01164
Number of Primary Studies*Error Variance*Type of téb 0.00925
Series Length*Error Variance*Autocorrelation*TypeModel 0.00789
Number of Participants*Error Variance 0.00697
Number of Participants*Type of Model 0.00659
Series Length*Type of Model 0.00602
Series Length*Number of Primary Studies 0.00525
Series Length*Error Variance*Type of Model 0.00481
Number of Participants*Error Variance*Type of Model 0.004
Series Length*Number of Participants 0.00316
Number of Primary Studies*Autocorrelation 0.00266
Series Length*Number of Primary Studies*Autocortiela 0.00259
Series Length*Number of Primary Studies*Type of Mbd 0.00203
Number of Primary Studies*Autocorrelation*Type obhtel 0.00201
Series Length*Number of Primary Studies*Error Vada 0.00196
Series Length*Number of Primary Studies*Error Vaga*Autocorrelation 0.00174
Number of Participants*Autocorrelation 0.00151
Number of Primary Studies*Error Variance*Autocoatsbn 0.00146
Number of Participants*Number of Primary Studies 000.04
Series Length*Number of Primary Studies*Autocortiela* Type of Model 0.00103
Number of Primary Studies*Error Variance*Autocoatibn*Type of Model 0.00103
Series Length*Number of Participants*Error Variatfgtocorrelation 0.00093
Number of Participants*Autocorrelation*Type of Mdde 0.00092
Series Length*Number of Participants*Autocorrelatio 0.00086
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Table A20 (Continued)

2

M
Series Length*Number of Primary Studies*Error Vada*Type of Model 0.00083
Series Length*Number of Participants*Type of Model 0.00079
Series Length*Number of Participants*Number of RuignStudies*Autocorrelation 0.00072
Series Length*Number of Participants*Error Variance 0.0007
Series Length*Number of Participants*Autocorrelatibype of Model 0.00047
Number of Participants*Error Variance*Autocorretatt Type of Model 0.00042
Number of Participants*Number of Primary Studiestdeorrelation 0.00038
Number of Participants*Error Variance*Autocorretati 0.00033
Number of Participants*Number of Primary StudiegtiE/ariance 0.00031
Number of Participants*Number of Primary Studiespy€yof Model 0.0003
Series Length*Number of Participants*Error Variarioge of Model 0.00027
Series Length*Number of Participants*Number of RaignStudies*Error Variance 0.00018
Series Length*Number of Participants*Number of RuigpnStudies*Type of Model 0.000155
Number of Participants*Number of Primary StudiestiEVariance*Type of Model 0.000147
Number of Participants*Number of Primary Studiestdaorrelation*Type of Model 0.000145
Series Length*Number of Participants*Number of RagnStudies 0.000139
Number of Participants*Number of Primary StudiestiEVariance*Autocorrelation 9.9E-05
Series Length*Number of Primary Studies*Fixed Lé&@eiltocorrelation 9.09E-05
Series Length*Number of Participants*Fixed Leveltdcorrelation 8.57E-05
Number of Primary Studies*Fixed Level*AutocorretatiType of Model 5.22E-05
Number of Participants*Number of Primary Studies#d Level*Error Variance 4.97E-05
Number of Participants*Number of Primary Studies#d Level*Autocorrelation 4.6E-05
Number of Participants*Moving Average 4.46E-05
Series Length*Fixed Level*Error Variance*Autocomgbn 4.16E-05
Number of Participants*Number of Primary StudiestiEN/ariance*Moving
Average 4.15E-05
Series Length*Number of Primary Studies*Error Vaga*Moving Average 4.03E-05
Number of Primary Studies*Fixed Level 3.87E-05
Series Length*Number of Participants*Moving Average 3.85E-05
Moving Average*Type of Model 3.83E-05
Series Length*Fixed Level*Error Variance*Moving Avage 3.75E-05
Number of Participants*Number of Primary Studies#d Level*Moving Average 3.75E-05
Number of Participants*Fixed Level*Autocorrelationype of Model 3.48E-05
Series Length*Error Variance*Moving Average 3.24E-05
Series Length*Number of Participants*Fixed Level 05E-05
Fixed Level*Error Variance*Autocorrelation*Type dfodel 2.89E-05
Number of Participants*Number of Primary Studies'Mwm Average 2.78E-05
Number of Primary Studies*Fixed Level*Autocorretati 2.76E-05
Error Variance*Moving Average*Type of Model 2.67E-05
Series Length*Number of Primary Studies*Fixed Level 2.59E-05
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Table A20(Continued)

2

M
Series Length*Moving Average*Type of Model 2.42E-05
Series Length*Number of Primary Studies*Moving Axge 2.38E-05
Moving Average 2.36E-05
Number of Participants*Fixed Level*Autocorrelation 2.34E-05
Number of Participants*Error Variance*Moving Averag 2.28E-05
Fixed Level*Autocorrelation 2.17E-05
Number of Primary Studies*Error Variance*Moving Aage 2.17E-05
Series Length*Number of Participants*Error VariatfMeving Average 2.14E-05
Number of Participants*Moving Average*Type of Model 1.99E-05
Fixed Level*Autocorrelation*Type of Model 1.9E-05
Series Length*Fixed Level*Moving Average 1.86E-05
Series Length*Error Variance*Moving Average*TypeNbdel 1.82E-05
Series Length*Number of Participants*Moving Aver&bgpe of Model 1.73E-05
Number of Primary Studies*Moving Average 1.67E-05
Number of Primary Studies*Fixed Level*Type of Model 1.5E-05
Number of Participants*Number of Primary Studies*Mwg Average*Type of Model 1.45E-05
Fixed Level*Error Variance*Moving Average 1.43E-05
Number of Primary Studies*Error Variance*Moving Aage*Type of Model 1.39E-05
Series Length*Fixed Level*Autocorrelation 1.39E-05
Series Length*Number of Primary Studies*Fixed L&Vgpe of Model 1.36E-05
Series Length*Number of Primary Studies*Moving Axge*Type of Model 1.35E-05
Series Length*Moving Average 1.25E-05
Series Length*Number of Participants*Fixed Levelf®rVariance 1.22E-05
Number of Participants*Fixed Level*Error Variance/fie of Model 1.19E-05
Number of Participants*Fixed Level*Error Variance 17E-05
Fixed Level*Moving Average 1.16E-05
Fixed Level*Error Variance 1.14E-05
Fixed Level*Error Variance*Autocorrelation 1.09E-05
Number of Participants*Fixed Level*Error VariancetMing Average 1.08E-05
Number of Primary Studies*Moving Average*Type of 1.08E-05
Series Length*Number of Participants*Fixed LevelpByof Model 1.06E-05
Number of Participants*Fixed Level*Error Varianceifcorrelation 1.05E-05
Number of Participants*Error Variance*Moving Aveetdype of Model 9.75E-06
Series Length*Fixed Level 9.74E-06
Series Length*Fixed Level*Moving Average*Type of Kliel 9E-06
Error Variance*Moving Average 8.83E-06
Series Length*Fixed Level*Autocorrelation*Type ofddel 8.24E-06
Number of Participants*Number of Primary Studies® Level 7.59E-06
Number of Participants*Fixed Level*Type of Model 57E-06
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Table A20 (Continued)

2

n
Series Length*Fixed Level*Type of Model 7.47E-06
Number of Primary Studies*Fixed Level*Error Variaiéutocorrelation 7.4E-06
Fixed Level*Error Variance*Type of Model 7.23E-06
Fixed Level*Moving Average*Type of Model 7.19E-06
Fixed Level*Type of Model 6.63E-06
Number of Primary Studies*Fixed Level*Error Varianc 6.33E-06
Number of Primary Studies*Fixed Level*Error VariaitMoving Average 5.74E-06
Series Length*Number of Primary Studies*Fixed Lé&ketor Variance 5.46E-06
Series Length*Fixed Level*Error Variance*Type of bk 5.01E-06
Number of Primary Studies*Fixed Level*Moving Aveetd ype of Model 3.96E-06
Fixed Level*Error Variance*Moving Average*Type of ddel 3.82E-06
Number of Primary Studies*Fixed Level*Error Variaitype of Model 3.6E-06
Number of Participants*Number of Primary Studiex#d Level*Type of Model 3.03E-06
Number of Participants*Fixed Level*Moving Averageffie of Model 2.48E-06
Fixed Level 1.7E-06
Number of Participants*Fixed Level*Moving Average A3E-06
Series Length*Number of Participants*Fixed Level*¥luy Average 1.42E-06
Series Length*Fixed Level*Error Variance 1.16E-06
Number of Participants*Fixed Level 1.14E-06
Series Length*Number of Participants*Number of RiignStudies*Moving Average 7.57E-07
Series Length*Number of Participants*Number of RuignStudies*Fixed Level 4.96E-07
Number of Primary Studies*Fixed Level*Moving Avermg 2.88E-07
Series Length*Number of Primary Studies*Fixed LéMgving Average 2.57E-07
Autocorrelation*Moving Average 0
Series Length*Autocorrelation*Moving Average 0
Number of Participants*Autocorrelation*Moving Avega 0
Series Length*Number of Participants*Autocorrelatigloving Average 0
Number of Primary Studies*Autocorrelation*Moving érage 0
Series Length*Number of Primary Studies*Autocortiela*Moving Average 0
Number of Participants*Number of Primary Studiestdeorrelation*Moving Average 0
Error Variance*Autocorrelation*Moving Average 0
Series Length*Error Variance*Autocorrelation*Movidyerage 0
Number of Participants*Error Variance*AutocorretattMoving Average 0
Number of Primary Studies*Error Variance*Autocoatbn*Moving Average 0
Fixed Level*Autocorrelation*Moving Average 0
Series Length*Fixed Level*Autocorrelation*Moving Avage 0
Number of Participants*Fixed Level*Autocorrelatidvibving Average 0
Number of Primary Studies*Fixed Level*AutocorretattMoving Average 0
Fixed Level*Error Variance*Autocorrelation*Movingverage 0
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Table A20 (Continued)

Autocorrelation*Moving Average*Type of Model

Series Length*Autocorrelation*Moving Average*TypéModel

Number of Participants*Autocorrelation*Moving AveetType of Model
Number of Primary Studies*Autocorrelation*Moving érage*Type of Model
Error Variance*Autocorrelation*Moving Average*Tymd Model

Fixed Level*Autocorrelation*Moving Average*Type dlodel

Total Explained

Table A21

Eta-Squared Values){) for the Association of the Design Factors with BMSE Values for the

Autocorrelation Parameter

2

il
Type of Model 0.33264
Autocorrelation*Type of Model 0.24376
Autocorrelation 0.23321
Series Length 0.05116
Number of Primary Studies 0.04356
Series Length*Autocorrelation 0.01881
Number of Participants 0.01558
Number of Primary Studies*Autocorrelation 0.00809
Error Variance 0.0078
Number of Primary Studies*Type of Model 0.00714
Series Length*Type of Model 0.00521
Number of Participants*Autocorrelation 0.00416
Error Variance*Type of Model 0.00405
Number of Participants*Type of Model 0.00224
Series Length*Number of Primary Studies 0.00196
Series Length*Error Variance 0.00112
Series Length*Number of Participants 0.0007
Number of Participants*Number of Primary Studies 00047
Error Variance*Autocorrelation 0.00023
Number of Primary Studies*Error Variance 0.00018
Number of Participants*Error Variance 0.00007
Number of Primary Studies*Fixed Level 0.00001
Error Variance*Moving Average 0.00001
Fixed Level*Error Variance 0.00001
Series Length*Moving Average 0.00001
Fixed Level*Moving Average 0.00001
Moving Average 0.00001
Number of Participants*Fixed Level 0.00001
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Table A21 (Continued)

Number of Primary Studies*Moving Average
Fixed Level*Autocorrelation

Moving Average*Type of Model

Number of Participants*Moving Average
Series Length*Fixed Level

Fixed Level*Type of Model

Fixed Level

Autocorrelation*Moving Average

Total Explained

Table A22

ol oNoNoNeoleNelNal W

0.

©

822

Eta-Squared Values)) for the Association of the Design Factors with Bias Estimates for the Moving

Average Parameter

2

n
Moving Average*Type of Model 0.45407
Autocorrelation 0.26246
Moving Average 0.0984
Autocorrelation*Type of Model 0.04353
Error Variance 0.02624
Type of Model 0.02417
Error Variance*Autocorrelation 0.02088
Error Variance*Type of Model 0.00983
Number of Primary Studies 0.00841
Series Length*Autocorrelation 0.00603
Series Length 0.00587
Number of Participants 0.00286
Number of Primary Studies*Type of Model 0.00264
Number of Primary Studies*Moving Average 0.00159
Series Length*Moving Average 0.00146
Number of Primary Studies*Error Variance 0.00123
Number of Participants*Type of Model 0.00099
Series Length*Type of Model 0.00063
Series Length*Error Variance 0.00059
Series Length*Number of Primary Studies 0.00057
Number of Participants*Error Variance 0.00054
Number of Primary Studies*Autocorrelation 0.00052
Number of Participants*Autocorrelation 0.00029
Number of Participants*Moving Average 0.00028
Error Variance*Moving Average 0.00024
Series Length*Number of Participants 0.00017
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Table A22 (Continued)

n
Number of Participants*Number of Primary Studies 00005
Fixed Level*Moving Average 0
Fixed Level*Autocorrelation 0
Number of Participants*Fixed Level 0
Fixed Level*Type of Model 0
Series Length*Fixed Level 0
Number of Primary Studies*Fixed Level 0
Fixed Level 0
Fixed Level*Error Variance 0
Autocorrelation*Moving Average 0
Total Explained 0.9745

Table A23

Eta-Squared Values)) for the Association of the Design Factors with @l coverage for the Level-

three for the Phase Effect

2

il
Error Variance 0.3074
Number of Participants 0.2965
Number of Participants*Error Variance 0.09014
Number of Primary Studies 0.07271
Number of Primary Studies*Error Variance 0.03461
Series Length 0.03445
Number of Participants*Number of Primary Studies 03085
Series Length*Error Variance 0.02772
Autocorrelation 0.01033
Error Variance*Autocorrelation 0.00953
Type of Model 0.00715
Series Length*Number of Primary Studies 0.00713
Autocorrelation*Type of Model 0.00438
Error Variance*Type of Model 0.00372
Series Length*Number of Participants 0.00281
Number of Primary Studies*Moving Average 0.00246
Number of Primary Studies*Autocorrelation 0.00223
Number of Participants*Moving Average 0.00211
Number of Participants*Autocorrelation 0.00137
Fixed Level 0.00113
Series Length*Autocorrelation 0.00105
Moving Average 0.00086
Number of Participants*Type of Model 0.00072
Fixed Level*Error Variance 0.00063
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Table A23 (Continued)

2

n
Series Length*Moving Average 0.00036
Fixed Level*Moving Average 0.00032
Number of Primary Studies*Type of Model 0.00029
Series Length*Type of Model 0.00026
Fixed Level*Autocorrelation 0.00024
Error Variance*Moving Average 0.0001
Number of Primary Studies*Fixed Level 0.00006
Number of Participants*Fixed Level 0.00004
Moving Average*Type of Model 0.00003
Series Length*Fixed Level 0.00001
Fixed Level*Type of Model 0
Autocorrelation*Moving Average 0
Total Explained 0.9537

Table A24

Eta-Squared Values)) for the Association of the Design Factors with @l coverage for the Level-

three for the Interaction Effect

2

n
Series Length 0.29368
Error Variance 0.14714
Number of Participants 0.14337
Series Length*Error Variance 0.11049
Series Length*Number of Participants 0.05523
Number of Primary Studies 0.03384
Number of Participants*Error Variance 0.03036
Series Length*Number of Primary Studies 0.02904
Autocorrelation 0.01867
Number of Participants*Number of Primary Studies 01687
Number of Primary Studies*Error Variance 0.01609
Type of Model 0.01449
Series Length*Autocorrelation 0.00932
Series Length*Type of Model 0.0075
Autocorrelation*Type of Model 0.00691
Error Variance*Type of Model 0.00606
Error Variance*Autocorrelation 0.00392
Number of Participants*Autocorrelation 0.00167
Number of Primary Studies*Autocorrelation 0.00148
Number of Primary Studies*Type of Model 0.00095
Fixed Level*Moving Average 0.00065
Fixed Level*Autocorrelation 0.00061
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Table A24 (Continued)

2

n
Number of Participants*Type of Model 0.00049
Series Length*Moving Average 0.00028
Number of Primary Studies*Fixed Level 0.00021
Series Length*Fixed Level 0.0002
Error Variance*Moving Average 0.00009
Number of Participants*Moving Average 0.00008
Number of Primary Studies*Moving Average 0.00006
Moving Average 0.00005
Number of Participants*Fixed Level 0.00005
Fixed Level 0.00004
Fixed Level*Error Variance 0.00002
Fixed Level*Type of Model 0.00001
Moving Average*Type of Model 0
Autocorrelation*Moving Average 0
Total Explained 0.9509

Table A25

Eta-Squared Values)) for the Association of the Design Factors with @l coverage for the Level-two

for the Phase Effect

2

il
Type of Model 0.42088
Autocorrelation*Type of Model 0.22263
Error Variance*Type of Model 0.08454
Error Variance 0.05333
Autocorrelation 0.04453
Number of Primary Studies*Type of Model 0.03959
Error Variance*Autocorrelation*Type of Model 0.03639
Number of Participants*Type of Model 0.02367
Number of Primary Studies*Autocorrelation*Type obhtel 0.01806
Number of Participants*Autocorrelation*Type of Mdde 0.01042
Error Variance*Autocorrelation 0.00864
Series Length*Type of Model 0.00707
Number of Primary Studies*Error Variance*Type of téb 0.00493
Series Length*Autocorrelation*Type of Model 0.00437
Number of Participants*Error Variance*Type of Model 0.0025
Number of Primary Studies*Autocorrelation 0.00236
Number of Primary Studies 0.0016
Number of Participants*Autocorrelation 0.00138
Series Length*Error Variance*Type of Model 0.00126
Number of Participants*Number of Primary Studiesp&yof Model 0.00114
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Table A25 (Continued)

2

M
Number of Participants 0.00098
Series Length*Autocorrelation 0.00095
Number of Participants*Number of Primary Studies 00081
Series Length*Number of Primary Studies 0.00058
Series Length*Number of Participants 0.00029
Number of Primary Studies*Error Variance 0.00023
Number of Participants*Error Variance 0.00022
Series Length*Error Variance 0.0002
Series Length*Error Variance*Autocorrelation 0.00013
Series Length*Number of Primary Studies*Type of Mbd 0.00013
Number of Primary Studies*Error Variance*Autocoatibn 0.00011
Number of Participants*Number of Primary Studiestdeorrelation 0.0001
Series Length*Number of Participants*Type of Model 0.00008
Number of Participants*Number of Primary StudiestiEVariance 0.00007
Number of Participants*Error Variance*Autocorretati 0.00006
Series Length*Number of Participants*Error Variance 0.00004
Series Length*Number of Participants*Number of RuignStudies 0.00004
Series Length*Number of Participants*Autocorrelatio 0.00002
Fixed Level*Moving Average 0.00002
Series Length*Number of Primary Studies*Autocortiela 0.00002
Series Length*Number of Participants*Moving Average 0.00001
Series Length*Fixed Level*Autocorrelation 0.00001
Number of Primary Studies*Fixed Level*Moving Averg 0.00001
Series Length 0.00001
Number of Primary Studies*Fixed Level*Autocorretati 0.00001
Fixed Level*Error Variance*Autocorrelation 0.00001
Error Variance*Moving Average 0.00001
Number of Primary Studies*Error Variance*Moving Aage 0.00001
Fixed Level*Error Variance*Moving Average 0.00001
Fixed Level 0.00001
Number of Participants*Fixed Level*Error Variance .00001
Series Length*Error Variance*Moving Average 6.28€&-0
Number of Participants*Fixed Level 6.23E-06
Series Length*Moving Average 5.39E-06
Number of Primary Studies*Moving Average 5.25E-06
Fixed Level*Autocorrelation 5.23E-06
Series Length*Number of Primary Studies*Error Vada 4.32E-06
Moving Average*Type of Model 4.04E-06
Number of Participants*Number of Primary Studiex®d Level 3.99E-06
Number of Primary Studies*Moving Average*Type of 3.79E-06
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Table A25(Continued)

2

n
Moving Average 3.19E-06
Number of Primary Studies*Fixed Level 2.72E-06
Number of Participants*Number of Primary Studies*Mwm Average 2.69E-06
Number of Participants*Fixed Level*Moving Average .18E-06
Number of Participants*Moving Average*Type of Model 2.06E-06
Error Variance*Moving Average*Type of Model 1.93B-0
Series Length*Fixed Level*Error Variance 1.69E-06
Series Length*Fixed Level*Moving Average 1.5E-06
Series Length*Number of Primary Studies*Fixed Level 1.22E-06
Number of Participants*Fixed Level*Autocorrelation 1.13E-06
Series Length*Moving Average*Type of Model 7E-07
Number of Participants*Error Variance*Moving Averg 5.8E-07
Number of Participants*Fixed Level*Type of Model 6E-07
Number of Participants*Moving Average 4.3E-07
Fixed Level*Autocorrelation*Type of Model 3.99E-07
Fixed Level*Moving Average*Type of Model 3.8E-07
Series Length*Number of Primary Studies*Moving Axge 3.03E-07
Number of Primary Studies*Fixed Level*Error Varianc 2.58E-07
Series Length*Number of Participants*Fixed Level 38E-07
Series Length*Fixed Level*Type of Model 2.34E-07
Series Length*Fixed Level 2.18E-07
Number of Primary Studies*Fixed Level*Type of Model 1.95E-07
Fixed Level*Error Variance*Type of Model 1.94E-07
Fixed Level*Error Variance 5.3E-08
Fixed Level*Type of Model 5.1E-08
Autocorrelation*Moving Average 0
Series Length*Autocorrelation*Moving Average 0
Number of Participants*Autocorrelation*Moving Avega 0
Number of Primary Studies*Autocorrelation*Moving érage 0
Error Variance*Autocorrelation*Moving Average 0
Fixed Level*Autocorrelation*Moving Average 0
Autocorrelation*Moving Average*Type of Model 0
Total Explained 0.9945
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Table A26

Eta-Squared Values)) for the Association of the Design Factors with @l coverage for the Level-two

for the Interaction Effect

2

n

Type of Model 0.38353
Autocorrelation*Type of Model 0.2222
Autocorrelation 0.0535
Series Length 0.05237
Number of Primary Studies*Type of Model 0.04095
Series Length*Type of Model 0.04015
Error Variance*Type of Model 0.03303
Error Variance 0.03015
Number of Participants*Type of Model 0.02338
Number of Primary Studies*Autocorrelation*Type obhtel 0.02174
Error Variance*Autocorrelation*Type of Model 0.01654
Series Length*Autocorrelation*Type of Model 0.01482
Number of Participants*Autocorrelation*Type of Mdde 0.01208
Series Length*Autocorrelation 0.00728
Error Variance*Autocorrelation 0.00575
Series Length*Error Variance 0.00574
Series Length*Number of Primary Studies*Type of Mbd 0.00358
Number of Primary Studies*Error Variance*Type of téb 0.00251
Series Length*Error Variance*Type of Model 0.00241
Number of Primary Studies*Autocorrelation 0.0022
Series Length*Number of Participants*Type of Model 0.00201
Number of Participants*Number of Primary Studiesp&yof Model 0.00141
Series Length*Number of Primary Studies 0.0014
Number of Participants*Autocorrelation 0.00135
Number of Participants*Error Variance*Type of Model 0.00134
Series Length*Number of Participants 0.00109
Number of Primary Studies 0.00089
Number of Participants*Number of Primary Studies 00086
Series Length*Number of Primary Studies*Error Vaga 0.00076
Series Length*Number of Participants*Error Variance 0.00068
Number of Participants 0.00046
Series Length*Error Variance*Autocorrelation 0.00038
Number of Primary Studies*Error Variance 0.00023
Number of Participants*Error Variance 0.00019
Number of Participants*Number of Primary StudiestiE/ariance 0.00011
Series Length*Number of Participants*Number of RuignStudies 0.00009
Series Length*Number of Primary Studies*Autocortielia 0.00006
Number of Participants*Number of Primary Studiestéeorrelation 0.00006
Fixed Level*Error Variance 0.00005
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Table A26 (Continued)

2

n

Series Length*Number of Participants*Autocorrelatio 0.00005
Number of Primary Studies*Error Variance*Autocoatsbn 0.00003
Error Variance*Moving Average 0.00003
Number of Participants*Number of Primary Studies'Mwm Average 0.00003
Number of Participants*Error Variance*Autocorretati 0.00002
Number of Participants*Number of Primary Studies® Level 0.00002
Series Length*Fixed Level*Autocorrelation 0.00001
Series Length*Error Variance*Moving Average 0.00001
Number of Primary Studies*Fixed Level*Autocorretati 0.00001
Number of Participants*Fixed Level*Moving Average .00001
Number of Primary Studies*Error Variance*Moving Aage 0.00001
Series Length*Number of Participants*Moving Average 0.00001
Number of Participants*Error Variance*Moving Averag 8.08E-06
Fixed Level*Moving Average*Type of Model 7.82E-06
Fixed Level*Error Variance*Moving Average 7.72E-06
Number of Participants*Fixed Level*Error Variance .7BE-06
Fixed Level*Moving Average 6.38E-06
Fixed Level 6.28E-06
Fixed Level*Error Variance*Autocorrelation 5.68E-06
Fixed Level*Autocorrelation 5.61E-06
Number of Participants*Fixed Level*Autocorrelation 5.37E-06
Series Length*Number of Primary Studies*Moving Axge 5.15E-06
Number of Primary Studies*Fixed Level*Moving Averg 4.6E-06
Number of Participants*Moving Average*Type of Model 4.38E-06
Moving Average 4.31E-06
Series Length*Fixed Level*Error Variance 4.19E-06
Series Length*Number of Primary Studies*Fixed Level 3.4E-06
Series Length*Fixed Level*Type of Model 3.01E-06
Fixed Level*Autocorrelation*Type of Model 2.98E-06
Series Length*Moving Average 2.94E-06
Number of Participants*Moving Average 2.83E-06
Series Length*Moving Average*Type of Model 2.73E-06
Number of Primary Studies*Moving Average 2.31E-06
Number of Primary Studies*Fixed Level*Type of Model 2.11E-06
Error Variance*Moving Average*Type of Model 1.2E-06
Number of Primary Studies*Fixed Level 1.15E-06
Moving Average*Type of Model 8.32E-07
Series Length*Number of Participants*Fixed Level 9R-07
Fixed Level*Type of Model 4.78E-07
Number of Primary Studies*Moving Average*Type of 4.73E-07
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Table A26 (Continued)

2

n
Number of Primary Studies*Fixed Level*Error Varianc 4.29E-07
Fixed Level*Error Variance*Type of Model 3.97E-07
Series Length*Fixed Level*Moving Average 3.51E-07
Number of Participants*Fixed Level*Type of Model 18E-07
Number of Participants*Fixed Level 2E-08
Series Length*Fixed Level 1.3E-08
Autocorrelation*Moving Average 0
Series Length*Autocorrelation*Moving Average 0
Number of Participants*Autocorrelation*Moving Aveya 0
Number of Primary Studies*Autocorrelation*Moving érage 0
Error Variance*Autocorrelation*Moving Average 0
Fixed Level*Autocorrelation*Moving Average 0
Autocorrelation*Moving Average*Type of Model 0
Total Explained 0.9877
Table A27
Eta-Squared Values)) for the Association of the Design Factors with @l coverage for the Level-one
Variance

n2
Autocorrelation 0.53353
Series Length*Type of Model 0.07255
Number of Primary Studies 0.06228
Series Length*Autocorrelation 0.05339
Series Length 0.04854
Series Length*Autocorrelation*Type of Model 0.04281
Number of Primary Studies*Autocorrelation 0.04087
Autocorrelation*Type of Model 0.02892
Number of Participants 0.02502
Type of Model 0.0211
Number of Participants*Autocorrelation 0.01566
Number of Primary Studies*Autocorrelation*Type obhtel 0.00709
Number of Primary Studies*Type of Model 0.00423
Error Variance*Autocorrelation 0.00419
Error Variance*Autocorrelation*Type of Model 0.00275
Series Length*Number of Primary Studies 0.00272
Number of Participants*Autocorrelation*Type of Mdde 0.00239
Error Variance*Type of Model 0.00236
Series Length*Number of Participants*Number of RuignStudies 0.00192
Number of Participants*Number of Primary Studiestdeorrelation 0.0018
Series Length*Error Variance*Autocorrelation 0.00141
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Table A27(Continued)

2

n
Series Length*Number of Primary Studies*Type of Mbd 0.0014
Number of Participants*Type of Model 0.00127
Series Length*Number of Primary Studies*Autocortiela 0.00114
Series Length*Number of Participants 0.00075
Series Length*Number of Primary Studies*Error Vada 0.00072
Series Length*Number of Participants*Autocorrelatio 0.00071
Series Length*Error Variance 0.00063
Error Variance 0.00043
Series Length*Number of Participants*Type of Model 0.00036
Number of Participants*Number of Primary Studies 00035
Number of Primary Studies*Error Variance 0.00033
Number of Primary Studies*Error Variance*Type of téb 0.00022
Series Length*Number of Participants*Error Variance 0.00019
Series Length*Error Variance*Type of Model 0.00018
Number of Participants*Error Variance*Type of Model 0.00014
Number of Participants*Error Variance 0.00013
Number of Participants*Number of Primary Studiesp&yof Model 0.00003
Number of Participants*Fixed Level 0.00002
Number of Primary Studies*Error Variance*Autocoatibn 0.00001
Number of Participants*Error Variance*Autocorretati 0.00001
Fixed Level*Error Variance*Moving Average 0.00001
Number of Participants*Number of Primary StudiestiEVariance 0.00001
Number of Participants*Fixed Level*Type of Model 0
Series Length*Number of Participants*Fixed Level 0
Series Length*Fixed Level*Autocorrelation 0
Series Length*Error Variance*Moving Average 0
Number of Participants*Error Variance*Moving Averag 0
Fixed Level*Autocorrelation*Type of Model 0
Fixed Level*Autocorrelation 0
Error Variance*Moving Average*Type of Model 0
Number of Primary Studies*Error Variance*Moving Aage 2.23E-06
Number of Participants*Fixed Level*Autocorrelation 2.12E-06
Number of Participants*Moving Average 1.8E-06
Series Length*Moving Average*Type of Model 1.63E-06
Series Length*Fixed Level*Moving Average 1.45E-06
Number of Primary Studies*Moving Average 1.4E-06
Series Length*Number of Primary Studies*Fixed Level 1.38E-06
Number of Primary Studies*Fixed Level*Moving Avermg 1.29E-06
Series Length*Moving Average 1.12E-06
Error Variance*Moving Average 9.63E-07

289

www.manaraa.com



Table A27(Continued)

2

n
Fixed Level*Moving Average 7.96E-07
Series Length*Fixed Level*Error Variance 7.65E-07
Moving Average*Type of Model 7.45E-07
Number of Primary Studies*Moving Average*Type of 7.22E-07
Number of Participants*Moving Average*Type of Model 6.29E-07
Fixed Level 6.12E-07
Fixed Level*Moving Average*Type of Model 5.7E-07
Number of Primary Studies*Fixed Level*Error Varianc 4.68E-07
Number of Primary Studies*Fixed Level*Type of Model 4.04E-07
Series Length*Fixed Level 4E-07
Series Length*Number of Primary Studies*Moving Axge 3.87E-07
Fixed Level*Type of Model 3.86E-07
Fixed Level*Error Variance*Autocorrelation 2.82E-07
Number of Participants*Number of Primary Studies® Level 2.25E-07
Number of Participants*Number of Primary Studies*Mwm Average 1.93E-07
Moving Average 1.9E-07
Series Length*Number of Participants*Moving Average 1.62E-07
Series Length*Fixed Level*Type of Model 1.61E-07
Number of Participants*Fixed Level*Moving Average 16E-07
Number of Participants*Fixed Level*Error Variance .08E-07
Fixed Level*Error Variance 1.01E-07
Fixed Level*Error Variance*Type of Model 5.5E-08
Number of Primary Studies*Fixed Level 5.2E-08
Number of Primary Studies*Fixed Level*Autocorretati 1E-09
Autocorrelation*Moving Average 0
Series Length*Autocorrelation*Moving Average 0
Number of Participants*Autocorrelation*Moving Aveya 0
Number of Primary Studies*Autocorrelation*Moving érage 0
Error Variance*Autocorrelation*Moving Average 0
Fixed Level*Autocorrelation*Moving Average 0
Autocorrelation*Moving Average*Type of Model 0
Total Explained 0.9846
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Table A28

Eta-Squared Values)) for the Association of the Design Factors wita @ coverage for the

Autocorrelation Parameter

2

n
Autocorrelation*Type of Model 0.32371
Type of Model 0.16802
Autocorrelation 0.05901
Series Length*Autocorrelation 0.0576
Number of Primary Studies 0.05538
Series Length 0.04776
Series Length*Autocorrelation*Type of Model 0.03759
Number of Primary Studies*Autocorrelation 0.02618
Number of Participants 0.02514
Series Length*Number of Primary Studies 0.02123
Series Length*Type of Model 0.01438
Number of Participants*Autocorrelation 0.01396
Error Variance*Autocorrelation*Type of Model 0.01157
Series Length*Number of Participants 0.01117
Series Length*Number of Primary Studies*Autocortiela 0.0111
Error Variance*Type of Model 0.01099
Number of Primary Studies*Type of Model 0.01022
Number of Participants*Number of Primary Studies 0058
Number of Primary Studies*Autocorrelation*Type obhtel 0.00736
Error Variance 0.00692
Number of Participants*Number of Primary Studiestdeorrelation 0.00587
Series Length*Number of Primary Studies*Type of Mbd 0.00497
Series Length*Number of Participants*Autocorrelatio 0.00456
Number of Participants*Type of Model 0.00415
Series Length*Number of Participants*Number of RaignStudies 0.0041
Number of Participants*Autocorrelation*Type of Mdde 0.00362
Series Length*Number of Participants*Type of Model 0.00254
Series Length*Error Variance 0.0021
Number of Participants*Number of Primary Studiespy&yof Model 0.002
Number of Primary Studies*Error Variance 0.00127
Error Variance*Autocorrelation 0.00124
Series Length*Error Variance*Autocorrelation 0.00108
Series Length*Number of Primary Studies*Error Vaga 0.0007
Number of Primary Studies*Error Variance*Type of téb 0.00065
Number of Primary Studies*Error Variance*Autocoatbn 0.00063
Series Length*Error Variance*Type of Model 0.00051
Number of Participants*Error Variance 0.00037
Number of Participants*Error Variance*Type of Model 0.00034
Series Length*Number of Participants*Error Variance 0.00031
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Table A28 (Continued)

2

n

Number of Primary Studies*Moving Average 0.0001
Number of Primary Studies*Error Variance*Moving Aage 0.0001
Number of Participants*Error Variance*Autocorretati 0.00008
Number of Participants*Number of Primary StudiestiE/ariance 0.00007
Fixed Level*Autocorrelation 0.00004
Fixed Level*Moving Average 0.00004
Error Variance*Moving Average 0.00003
Number of Participants*Moving Average 0.00003
Series Length*Error Variance*Moving Average 0.00003
Number of Participants*Number of Primary Studies® Level 0.00003
Number of Primary Studies*Fixed Level*Autocorretati 0.00002
Number of Participants*Error Variance*Moving Averg 0.00002
Series Length*Fixed Level*Moving Average 2.23E-05
Series Length*Number of Participants*Fixed Level 07E-05
Number of Participants*Fixed Level*Autocorrelation 1.75E-05
Series Length*Fixed Level*Autocorrelation 1.71E-05
Fixed Level*Error Variance*Type of Model 1.66E-05
Number of Participants*Fixed Level 1.49E-05
Series Length*Number of Primary Studies*Moving Axge 1.45E-05
Number of Participants*Fixed Level*Moving Average .3GE-05
Moving Average 1.26E-05
Fixed Level 1.21E-05
Error Variance*Moving Average*Type of Model 1.136B-0
Series Length*Fixed Level 1.12E-05
Number of Primary Studies*Fixed Level*Moving Averg 1.08E-05
Moving Average*Type of Model 9.48E-06
Series Length*Moving Average*Type of Model 9.27E-06
Fixed Level*Type of Model 8.95E-06
Fixed Level*Autocorrelation*Type of Model 7.64E-06
Number of Participants*Number of Primary Studies'Mwm Average 7.61E-06
Number of Participants*Moving Average*Type of Model 7.37E-06
Series Length*Fixed Level*Error Variance 7.04E-06
Number of Primary Studies*Moving Average*Type of thgd 5.33E-06
Series Length*Moving Average 5.29E-06
Number of Participants*Fixed Level*Type of Model 43E-06
Fixed Level*Moving Average*Type of Model 3.04E-06
Number of Primary Studies*Fixed Level*Error Varianc 2.19E-06
Fixed Level*Error Variance*Autocorrelation 1.95E-06
Number of Primary Studies*Fixed Level*Type of Model 1.86E-06
Series Length*Fixed Level*Type of Model 1.85E-06
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Table A28 (Continued)

2

M
Series Length*Number of Participants*Moving Average 1.83E-06
Series Length*Number of Primary Studies*Fixed Level 1.16E-06
Fixed Level*Error Variance*Moving Average 5.95E-07
Number of Participants*Fixed Level*Error Variance OB-07
Fixed Level*Error Variance 1.26E-07
Number of Primary Studies*Fixed Level 7.1E-08
Autocorrelation*Moving Average 0
Series Length*Autocorrelation*Moving Average 0
Number of Participants*Autocorrelation*Moving Aveya 0
Number of Primary Studies*Autocorrelation*Moving érage 0
Error Variance*Autocorrelation*Moving Average 0
Fixed Level*Autocorrelation*Moving Average 0
Autocorrelation*Moving Average*Type of Model 0
Total Explained 0.9688

Table A29

Eta-Squared Values){)for the Association of the Design Factors with @lecoverage for the Moving

Average Parameter

2

M

Moving Average*Type of Model 0.53854
Moving Average 0.2604
Autocorrelation 0.18233
Autocorrelation*Type of Model 0.005

Type of Model 0.00144
Series Length*Type of Model 0.00067
Series Length*Moving Average 0.00045
Error Variance*Autocorrelation 0.00043
Series Length*Autocorrelation 0.00033
Error Variance*Moving Average 0.0003
Error Variance*Type of Model 0.00016
Number of Primary Studies*Moving Average 0.00014
Error Variance 0.00013
Number of Primary Studies*Autocorrelation 0.00011
Number of Participants*Moving Average 0.00008
Number of Primary Studies*Type of Model 0.00008
Number of Primary Studies 0.00005
Number of Participants*Type of Model 0.00004
Number of Participants 0.00003
Number of Participants*Autocorrelation 0.00001
Number of Primary Studies*Error Variance 0.00001
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Table A29 (Continued)

2

il
Series Length*Error Variance 0.00001
Number of Participants*Error Variance 0
Fixed Level*Moving Average 0
Fixed Level*Autocorrelation 0
Series Length 0
Series Length*Number of Participants 0
Number of Participants*Number of Primary Studies 0
Series Length*Number of Primary Studies 0
Fixed Level 0
Fixed Level*Type of Model 0
Number of Participants*Fixed Level 0
Fixed Level*Error Variance 0
Series Length*Fixed Level 0
Number of Primary Studies*Fixed Level 0
Autocorrelation*Moving Average 0
Total Explained 0.9907
Table A30
Eta-Squared Values|{)for the Association of the Design Factors with @léVidth for the Level-one
Variance

n2

Type of Model 0.17801
Series Length 0.15039
Number of Primary Studies 0.13942
Autocorrelation*Type of Model 0.08227
Number of Participants 0.06393
Autocorrelation 0.06279
Series Length*Type of Model 0.05071
Series Length*Autocorrelation*Type of Model 0.02111
Number of Primary Studies*Type of Model 0.01973
Series Length*Number of Primary Studies 0.01684
Series Length*Autocorrelation 0.01413
Number of Participants*Type of Model 0.01071
Number of Primary Studies*Autocorrelation*Type obhtel 0.01065
Error Variance 0.00926
Series Length*Number of Participants 0.0091
Error Variance*Type of Model 0.00888
Number of Primary Studies*Autocorrelation 0.0088
Number of Participants*Number of Primary Studies 00085
Series Length*Number of Primary Studies*Type of Mbd 0.00724
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Table A30(Continued)

2

n

Series Length*Error Variance 0.00677
Series Length*Error Variance*Type of Model 0.00637
Number of Participants*Autocorrelation*Type of Mdde 0.00616
Error Variance*Autocorrelation*Type of Model 0.00533
Number of Participants*Autocorrelation 0.0052
Error Variance*Autocorrelation 0.00447
Series Length*Number of Participants*Type of Model 0.00444
Series Length*Error Variance*Autocorrelation 0.00341
Series Length*Number of Primary Studies*Autocortiela 0.0032
Number of Primary Studies*Error Variance 0.00263
Number of Primary Studies*Error Variance*Type of téb 0.00254
Number of Participants*Number of Primary Studiespy&yof Model 0.00227
Series Length*Number of Participants*Autocorrelatio 0.00225
Series Length*Number of Primary Studies*Error Vaga 0.00215
Series Length*Number of Participants*Number of RuignStudies 0.002
Number of Primary Studies*Error Variance*Autocoatsbn 0.00186
Number of Participants*Error Variance 0.00176
Number of Participants*Error Variance*Type of Model 0.0017
Number of Participants*Number of Primary Studiestdeorrelation 0.00162
Series Length*Number of Participants*Error Variance 0.00152
Number of Participants*Error Variance*Autocorretati 0.0014
Number of Participants*Number of Primary StudiestiEVariance 0.00098
Number of Participants*Error Variance*Moving Averag 0.00043
Series Length*Number of Primary Studies*Moving Axge 0.00043
Number of Primary Studies*Error Variance*Moving Aage 0.00042
Series Length*Moving Average 0.00042
Series Length*Moving Average*Type of Model 0.00042
Number of Participants*Number of Primary Studies'Mwm Average 0.00042
Series Length*Number of Participants*Moving Average 0.00041
Number of Primary Studies*Moving Average 0.00041
Moving Average 0.00041
Moving Average*Type of Model 0.00041
Number of Primary Studies*Moving Average*Type of thgd 0.000412
Number of Participants*Moving Average 0.000409
Number of Participants*Moving Average*Type of Model 0.000408
Series Length*Error Variance*Moving Average 0.000408
Error Variance*Moving Average*Type of Model 0.000403
Error Variance*Moving Average 0.000402
Number of Participants*Fixed Level*Moving Average .000149
Fixed Level*Error Variance*Moving Average 0.000142

295

www.manaraa.com



Table A30 (Continued)

2

n
Fixed Level*Moving Average 0.000127
Number of Primary Studies*Fixed Level*Moving Avermg 0.000126
Fixed Level*Moving Average*Type of Model 0.000125
Series Length*Fixed Level*Moving Average 0.000123
Fixed Level*Autocorrelation 9.91E-05
Number of Primary Studies*Fixed Level*Autocorretati 9.87E-05
Fixed Level*Autocorrelation*Type of Model 9.78E-05
Series Length*Fixed Level*Autocorrelation 9.56E-05
Number of Participants*Fixed Level*Autocorrelation 8.91E-05
Fixed Level*Error Variance*Autocorrelation 8.55E-05
Number of Participants*Number of Primary Studiextd Level 6.98E-05
Series Length*Fixed Level*Error Variance 6.91E-05
Series Length*Fixed Level 6.85E-05
Series Length*Number of Primary Studies*Fixed Level 6.85E-05
Number of Primary Studies*Fixed Level 6.75E-05
Series Length*Fixed Level*Type of Model 6.72E-05
Fixed Level 6.7E-05
Fixed Level*Error Variance 6.67E-05
Number of Primary Studies*Fixed Level*Type of Model 6.59E-05
Fixed Level*Type of Model 6.59E-05
Series Length*Number of Participants*Fixed Level 54E-05
Number of Primary Studies*Fixed Level*Error Varianc 6.51E-05
Fixed Level*Error Variance*Type of Model 6.5E-05
Number of Participants*Fixed Level*Type of Model 46E-05
Number of Participants*Fixed Level 6.38E-05
Number of Participants*Fixed Level*Error Variance .83E-05
Autocorrelation*Moving Average 0
Series Length*Autocorrelation*Moving Average 0
Number of Participants*Autocorrelation*Moving Aveya 0
Number of Primary Studies*Autocorrelation*Moving érage 0
Error Variance*Autocorrelation*Moving Average 0
Fixed Level*Autocorrelation*Moving Average 0
Autocorrelation*Moving Average*Type of Model 0
Total Explained 0.9509
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Table A31

Eta-Squared Values|{)for the Association of the Design Factors with @léNidth for the

Autocorrelation Parameter

2

n
Type of Model 0.54456
Autocorrelation*Type of Model 0.30678
Series Length 0.04354
Series Length*Type of Model 0.02829
Number of Primary Studies 0.02119
Autocorrelation 0.00992
Number of Participants 0.00834
Number of Primary Studies*Type of Model 0.00476
Number of Primary Studies*Autocorrelation 0.00328
Error Variance*Autocorrelation 0.00315
Number of Participants*Type of Model 0.00213
Number of Participants*Autocorrelation 0.00143
Error Variance*Type of Model 0.00065
Series Length*Number of Primary Studies 0.00057
Series Length*Autocorrelation 0.00044
Series Length*Error Variance 0.0004
Series Length*Number of Participants 0.00028
Number of Participants*Number of Primary Studies 00013
Error Variance 0.00009
Number of Primary Studies*Error Variance 0.00002
Number of Participants*Error Variance 0.00001
Fixed Level*Error Variance 0
Fixed Level*Type of Model 0
Fixed Level 0
Number of Participants*Moving Average 0
Series Length*Fixed Level 0
Number of Primary Studies*Moving Average 0
Fixed Level*Autocorrelation 0
Fixed Level*Moving Average 0
Moving Average*Type of Model 0
Series Length*Moving Average 0
Moving Average 0
Number of Participants*Fixed Level 0
Error Variance*Moving Average 0
Number of Primary Studies*Fixed Level 0
Autocorrelation*Moving Average 0
Total Explained 0.9800
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Table A32

Eta-Squared Values|{)for the Association of the Design Factors with @léNidth for the Moving

Average Parameter

2

n

Autocorrelation*Type of Model 0.27967
Type of Model 0.12097
Autocorrelation 0.06956
Error Variance*Autocorrelation*Type of Model 0.05626
Error Variance*Type of Model 0.02664
Number of Participants*fix*Error Variance*Autocotation*Type of Model 0.02572
Number of Primary Studies*Autocorrelation*Type obhtel 0.02324
Series Length*Autocorrelation*Type of Model 0.02239
Series Length*Number of Participants*Error Variarfsetocorrelation*Type of

Model 0.01625
Error Variance*Autocorrelation 0.01405
Number of Participants*Fixed Level*Error Variance/fie of Model 0.00919
Fixed Level*Error Variance*Autocorrelation*Type dfodel 0.00916
Series Length*Number of Primary Studies*Error Vaga*Autocorrelation*Model 0.00904

Table 33A Continued

Eta-Squared Valueg)})for the Association of the Design Factors with @iéwidth for the Moving

Average Parameter

Number of Primary Studies*Error Variance*Moving Aage*Type of Model
Series Length*Number of Primary Studies*Error Vaga*the*Type of Model
Series Length*fix*Error Variance*Autocorrelation*pg of Model

Number of Participants*Moving Average*Type of Model

Series Length*Number of Participants*Moving Aver&bgpe of Model

Series Length*Number of Primary Studies*fix*Autocelation*Type of Model
Series Length*Number of Participants*Number of RaignStudies*the*Type of
Model

Series Length*Error Variance*Moving Average*TypeNbdel
Number of Primary Studies*fix*Error Variance*Autoeelation*Type of Model
Error Variance*Moving Average*Type of Model

Number of Participants*Number of Primary Studies*Mw Average*Type of Model
Number of Participants*Number of Primary Studies*fiutocorrelation*Type of
Model

Error Variance

Number of Participants*Fixed Level*Error Varianceicorrelation
Series Length*Number of Primary Studies*Type of Mbd

Number of Primary Studies*Autocorrelation

Series Length*Autocorrelation

Number of Primary Studies*Error Variance*Autocoatbn*Type of Model
Number of Participants*Error Variance*Autocorretatt Type of Model
Series Length*Number of Participants*Type of Model

Series Length*Number of Participants*Autocorrelatibype of Model

298

0.00826
0.00816
0.00749
0.00743
0.00724
0.00722

0.00703
0.007
0.00696

0.0069
0.00684

0.00684
0.00671
0.00643
0.00594
0.00584
0.00566
0.00565
0.00497
0.00496
0.00474
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Table A32 (Continued)

2

M

Series Length*Number of Participants*fix*Autocoméibn*Type of Model 0.00457
Number of Participants*Number of Primary StudiestiEVariance*Autocorrelation*Type
of Model 0.00443
Series Length*Number of Primary Studies*Autocortiela*Type of Model 0.00412
Series Length*Number of Participants*Error Variatfgtocorrelation 0.00406
Number of Participants*Number of Primary StudiestiEVariance*Type of Model 0.00401
Number of Participants*Type of Model 0.00397
Series Length*Error Variance*Autocorrelation*TypeModel 0.00298
Number of Participants*Autocorrelation*Type of Mdde 0.00293
Number of Participants*Error Variance*Type of Model 0.00292
Series Length*Number of Participants*Number of RagnStudies*Error
Variance*Autocorrelation 0.00285
Series Length*Number of Primary Studies*Moving Axge*Type of Model 0.00274
Number of Primary Studies*Moving Average*Type of 0.00262
Series Length*Number of Participants*Error Variatthe*Type of Model 0.00248
Number of Participants*Error Variance*Moving Aveet@ype of Model 0.00242
Number of Participants*Fixed Level*Error Variance 0.0023
Fixed Level*Error Variance*Autocorrelation 0.00229
Series Length*Number of Primary Studies*Error Vada*Autocorrelation 0.00225
Number of Participants*Number of Primary StudiestiE/ariance*the*Type of Model 0.002249
Series Length*Number of Participants*Fixed LevelpByof Model 0.002246
Series Length*Fixed Level*Autocorrelation*Type ofddel 0.002228
Number of Primary Studies*Error Variance*Moving Aage 0.002067
Series Length*Number of Primary Studies*Error Vaga*Moving Average 0.00204
Moving Average*Type of Model 0.002029
Series Length*Moving Average*Type of Model 0.001928
Series Length*Fixed Level*Error Variance*Autocogbn 0.001874
Number of Participants*Moving Average 0.001857
Series Length*Number of Participants*Moving Average 0.001809
Series Length*Number of Primary Studies*Fixed Lé&@eiltocorrelation 0.001806
Series Length*Number of Participants*Number of RuignStudies*Moving Average 0.001758
Series Length*Error Variance*Moving Average 0.001748
Number of Primary Studies*Fixed Level*Error Variaiéutocorrelation 0.001739
Error Variance*Moving Average 0.001725
Number of Participants*Number of Primary Studies*Mwm Average 0.00171
Number of Participants*Number of Primary Studies#d Level*Autocorrelation 0.001709
Series Length*Number of Participants*Number of RuignStudies*Autocorrelation*Type
of Model 0.001703
Number of Participants*Number of Primary Studies*&rror Variance*Type of Model 0.001695
Number of Participants*Number of Primary Studiestdeorrelation*Type of Model 0.001658
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Table A32 (Continued)

Series Length*Number of Primary Studies*fix*Erroaiance*Type of Model 0.001642
Fixed Level*Error Variance*Type of Model 0.0015
Series Length*Number of Primary Studies 0.001489
Number of Primary Studies*Error Variance*Autocoatsbn 0.001411
Series Length*Number of Participants*Number of RuigpnStudies*Type of Model 0.001393
Number of Participants*Number of Primary Studiespy€yof Model 0.001274
Series Length*Fixed Level*Error Variance*Type of bk 0.001256
Number of Participants*Error Variance*Autocorretati 0.001241
Series Length*Number of Participants 0.00124
Series Length*Number of Participants*Number of RagnStudies*fix*Error Variance 0.001231
Number of Primary Studies*Fixed Level*AutocorretatiType of Model 0.001212
Series Length*Number of Participants*Autocorrelatio 0.001182
Series Length*Number of Participants*Fixed Leveltdcorrelation 0.001143
Number of Primary Studies*Fixed Level*Type of Model 0.001135
Number of Participants*Number of Primary StudiestiEVariance*Autocorrelation 0.001108
Number of Participants*Fixed Level*Autocorrelationype of Model 0.00109
Number of Participants*Number of Primary Studiex#d Level*Type of Model 0.001071
Number of Participants 0.001025
Series Length*Number of Primary Studies*Autocortiela 0.001023
Number of Primary Studies*Fixed Level*Error Variaitype of Model 0.001018
Number of Participants*Number of Primary StudiestiEN/ariance 0.001
Series Length*Number of Primary Studies*fix*Erroaance*Autocorrelation 0.000906
Series Length*Number of Participants*Number of RuignStudies*Error Variance*Type

of Model 0.000844
Series Length*Error Variance*Type of Model 0.000765
Series Length*Error Variance*Autocorrelation 0.000749
Number of Participants*Autocorrelation 0.000729
Number of Participants*Error Variance 0.000728
Series Length*Number of Primary Studies*Moving Axge 0.000685
Number of Primary Studies*Moving Average 0.000656
Series Length*Number of Participants*Error Variatfdeving Average 0.00062
Number of Participants*Error Variance*Moving Averg 0.000606
Total Explained 0.9449
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