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ABSTRACT 
 
 

 Single-case interventions allow for the repeated measurement of a case or participant 

across multiple time points, to assess the treatment’s effect on one specific case or participant. 

The basic interrupted time series design includes two phases: baseline and treatment. 

Raudenbush and Byrk (2002) demonstrated that a meta-analysis of large group designs can be 

seen as a special case of multi-level analysis with participants (level-one) nested within studies 

(level-two). Raw data from a set of single case design studies have a similar structure. Van den 

Noortgate and Onghena (2003) illustrated the use of a two-level model to analyze data in 

primary single-case studies. In 2008, Van den Noortgate and Onghena later proposed that if raw 

data from several single case designs are used in a meta-analysis, scores can be varied at each of 

the three levels: over occasions (level-one), across participants from the same study (level-two), 

and across studies (level-three). 

 The multi-level approach allows for a large degree of flexibility in modeling the data 

(Goldstein & Yang, 2000; Hox & de Leeuw, 1997). Researchers can make various 

methodological decisions when specifying the model to approximate the data. Those decisions 

are critical since parameters can be biased if the statistical model is not correctly specified. The 

first of these decisions is how to model the level-one error structure--is it correlated or 

uncorrelated? Recently, the investigation of the Van den Noortgate and Onghena’s (2008) three-

level meta-analytic model has increased and shown promising results (Owens & Ferron, 2011; 

Ugille, Moeyaert, Beretvas, Ferron, & Van den Noortgate,  2012 ). These studies have shown the 

fixed effects tend to be unbiased and the variance components have been problematic across a 
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range of conditions. Based on a thorough literature review, no one has looked at the model in 

relation to the use of fit indices or log likelihood tests to select an appropriate level-one error 

structure. 

 The purpose of the study was two-fold: 1) to determine the extent to which the various fit 

indices can correctly identify the level-one covariance structure; and 2) to investigate the effect 

of various forms of misspecification of the level-one error structure when using a three-level 

meta-analytic single-case model. This study used Monte Carlo simulation methods to address the 

aforementioned research questions. Multiple design, data, and analysis factors were manipulated 

in this study. The study used a 2x2x2x2x2x5x7 factorial design. Seven experimental variables 

were manipulated in this study: 1) The number of primary studies per meta-analysis (10 and 30);  

2) The number of participants per primary study (4 and 8);  3)The series length per participant 

(10 and 20);  4)Variances of the error terms (most of the variance at level-one: [σ2=1; Σ� = 0.5, 

0.05, 0.5, 0.05;  Σ� = 0.5, 0.05, 0.5, 0.05] and most of the variance at the upper levels: [σ2=1; Σ� 

=  2, 0.2, 2, 0.2;  Σ� =  2, 0.2, 2, 0.2]);  5) The levels for the fixed effects (0, 2 [corresponding to 

the shift in level]; and 0, 0.2[corresponding to the shift in slope]) 6)Various types of covariance 

structures were used for data generation (ID, AR(1), and ARMA (1,1); and 7) The form of model 

specification [i.e. ID, AR(1), ARMA (1,1)], and error structure selected by AIC, AICC, BIC, and 

the LRT. 

 The results of this study found that the fixed effects tend to mostly be unbiased, however, 

the variance components were extremely biased with particular design factors. The study also 

concluded that the use of fit indices to select the correct level-1 structure was appropriate for 

certain error structures. The accuracy of the fit indices tend to increase for the simpler level-one 

error structures. There were multiple implications for the applied single-case researcher, for the 
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meta-analyst, and for the methodologist. Future research included investigating different 

estimation methods, such as Bayesian approach, to improve the estimates of the variance 

components and coupling multiple violations of the error structures, such as non-normality at 

levels two and three. 
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CHAPTER ONE: INTRODUCTION 
 
 

Single-Case Designs 
 

Single-case interventions allow for the repeated measurement of a case or participant 

across multiple time points, to assess the treatment’s effect on one specific case or participant. 

The basic interrupted time series design includes two phases: baseline and treatment. The 

baseline (pretreatment) phase consists of a series of observations preceding the introduction of a 

treatment.  The baseline phase serves two primary functions: 1) to describe the existing level of 

performance that is to be altered, and 2) to serve as the basis for which predictions can be made 

for the participant if the intervention had not been introduced. The treatment phase consists of a 

series of observations following the introduction of a treatment.  Inferences about the research 

are usually made about the effects of the intervention by comparing different conditions 

(baseline vs. treatment) presented to the same participant or many participants over time 

(Kazdin, 2011). There are many commonly used single case designs. The most commonly used 

design is the multiple-baseline, which includes time-series data from multiple participants (or 

behaviors or settings) where an intervention is staggered to occur at different time points within 

the various series (Ferron et al., 2009).   

Repeated measures design is based on continuous observations over time for the same 

subject. This feature of single case research is one of the strengths of this design given that it can 

allow a researcher to analyze a particular case in depth. However, this can also present 

challenges in terms of choosing an appropriate data analysis method. The need to model serial 

dependency, the amount of dependence is typically characterized by the correlation between 
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adjacent time points, had been a great discussion in the literature. Specifically, whether or not 

single-case data can show serial dependence due to small sample sizes, or how to best estimate 

the autoregressive parameters to ensure that they are unbiased due to the small n was debated in 

the single case literature (Matyas & Greenwood, 1996; Huitema & McKean, 1991). 

Nevertheless, studies have shown that there is indeed some correlation beyond random chance in 

repeated measures design for observations within a single subject (Kratochwill et al., 1974). 

Barlow, Nock, and Hersen (2009) concluded that autocorrelation may or may not exist given the 

above debate, however, based upon past research, it would appear reasonable for single-case 

analysts to examine their data for the presence of autocorrelation. If autocorrelation is assumed 

to be present in the population, then choosing a method that is appropriate for their data seems 

ideal.   

There are numerous options or tools when analyzing single-case designs. Examples of 

these analyses options include visual analysis, randomization tests, and multi-level modeling. 

Additionally, there are a variety of effect size indices that are used to supplement these analyses 

options. These include non-parametric effect size indices, such as percentage of non-overlapping 

data (Scruggs & Mastropieri, 1998), a change in R2 (Allison & Gorman, 1993; Beretvas & 

Chung, 2008; Kromrey & Foster-Johnson, 1996), or the use of standardized coefficients when 

applying multi-level models (Van den Noortgate & Onghena, 2003, 2007, 2008). These effect 

size measures are often used to characterize the size of the intervention effect. Researchers are 

not only interested in the intervention effect within a particular study, but may also want to know 

about the intervention effect across studies. 

Meta-analytic procedures allow researchers to quantitatively synthesize past research 

results, and provide evidence for best practices (Hedges & Olkin, 1985). However, there has 
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been no consensus on the best way to synthesize these data. Beretvas and Chung (2008) 

conducted a narrative review of 25 single-case meta-analyses and found that most of the SSED 

(single-subject experimental designs) meta-analysts were using non-parametric approaches. They 

found that meta-analysts were using the simplest indicators as effect size measures, such as 

change in R2 (Mooney, Ryan, Uhing, Reid, & Epstein, 2005; Swanson & Sachse-Lee, 2000); and 

non-parametric methods such as the percentage of non-overlapping data (PND) (Templeton, 

Neel, & Blood, 2008; Xin & Jitendra, 1999) and/or the percent of all non-overlapping data 

(PAND) (Bellini, Peters, Benner, & Hopf,  2007; Codding, Burns, & Lukito, 2011) for 

conducting meta-analysis involving single-case research. One major limitation is that these 

approaches do not allow for inferences about the treatment effects. 

Raudenbush and Byrk (2002) demonstrated that a meta-analysis of large group designs 

can be seen as a special case of multi-level analysis with participants (level-one) nested within 

studies (level-two). Raw data from a set of single case design studies have a similar structure. 

Van den Noortgate and Onghena (2003) illustrated the use of a two-level model to analyze data 

in primary single-case studies. In 2008, Van den Noortgate and Onghena later proposed that if 

raw data from several single case designs are used in a meta-analysis, scores can be varied at 

each of the three levels: over occasions (level-one), across participants from the same study 

(level-two), and across studies (level-three). Equation 1 below describes the variation within 

participants that occurs when treatment conditions are compared with a baseline condition (level-

one).  At the second level, the variation over participants is shown using two regression 

equations (Equations 2 and 3). Finally, the last set of equations describes the variation across the 

studies (Equations 4 and 5) that are included in the meta-analysis. 
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Equations 1-5 below denote the model used to represent the fixed effects and the variance 

components at each of the three levels. The variable phase is a dichotomous variable 

representing the baseline phase (phase = 0) and the treatment phase (phase = 1). It should be 

noted that errors on all three levels are typically assumed to be normally distributed and have a 

mean of 0. The model is presented below:    

Level 1 Equation: 
Y ijk = β0jk + β1jk*phase+ eijk ,  ����~
�0, Σ��        (1) 

 

Level 2 Equations: 

β0jk = θ00k + u0jk    ���������� ~
�0, Σ��      (2) 

β1jk = θ10k + u1jk            (3) 
 

Level 3 Equations: 

θ00k = Ƴ000 + v00k                  ���������� ~
�0, Σ��      \(4) 

θ10k = Ƴ100 + v10k            (5) 
 

The multi-level approach allows for a large degree of flexibility in modeling the data 

(Goldstein & Yang, 2000; Hox & de Leeuw, 1997). Researchers can make various 

methodological decisions when specifying the model to approximate the data. Those decisions 

are critical since parameters can be biased if the statistical model is not correctly specified. The 

first of these decisions is how to model the level-one error structure--is it correlated or 

uncorrelated? The errors in the first-level of the model represent the discrepancy between the 

values of the outcome observed and of the individuals’ growth trajectory (Ferron, Dailey, & Yi, 

2002).   

There are several options when dealing with the level-one error structure. These options 

range from assuming that the error structure is uncorrelated, σ2 I  to choosing an appropriate 
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correlated error structure. A method of handling the level-one error structure is to ignore the 

correlated error structure, subsequently making incorrect assumptions, such as the assumption of 

independence (Littell, Pendergast, & Natarajan, 2000). A researcher has to decide if the level-

one error structure (Kesselman, Algina, Kowalchuk, & Wolfinger, 1999) should be correlated or 

uncorrelated. If the error structure is correlated, then which structure is best? Is it a first-order 

autoregressive or a moving average autoregressive model? The most commonly used level-one 

error structure is Σ = σ2 I , which is used when a researcher has decided that the errors are 

uncorrelated. For correlated level-one error structure, the most commonly used option is the first-

order autoregressive, AR (1) (Ferron, Dailey, & Yi, 2002). The use of fit indices to determine the 

correct level-one error structure has not been examined in the single case literature. Furthermore, 

the consequences of various forms of misspecification of the level-one error structure have also 

not been investigated in terms of the meta-analysis of single-case data. Therefore, the study 

utilized research related to the broader repeated measures or longitudinal literature to design the 

conditions that were used. 

Autocorrelation and Longitudinal Designs  

Whether or not to model autocorrelation had been a huge discussion and studied 

extensively in growth curve modeling (GC modeling) or longitudinal data analysis (Kesselman, 

Littell, & Sivo, 2003). Growth curve modeling (or longitudinal) data’s defining characteristic is 

that individuals are measured repeatedly over time enabling direct study of change (Diggle, 

Heagerty, Liang, & Zeger, 2002). A question that commonly arises with both single case and 

longitudinal designs is whether or not the model has the correct level-one error structure 

specification, and if so, what is the correct error structure?  Many researchers who use 

uncorrelated error structures commonly assume that Σ = σ2 I   (Bryk & Raudenbush, 2002).This 
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commonly used approach should lead the researcher to question or to ask whether or not Σ has 

been misspecified (Kesselman et al 1999; Kwok, West, Green, 2007).  Simply assuming that the 

level-one errors are uncorrelated has shown to lead to inflated Type I errors and biased 

confidence interval coverage in single case designs (Ferron, Bell, Hess, Rendina-Gibioff, & 

Hibbard,  2009) and in longitudinal data analysis (Kwok et al., 2007) if in fact, autocorrelation is 

present in the population.  

Conversely, once researchers have decided to model a correlated level-one error 

structure, there are two commonly used approaches to select an appropriate level-one covariance 

structure when using multi-level models. Some researchers may choose to specify their model 

using a simple correlated error structure a priori (Kwok, West, & Green, 2007; Murphy & 

Pituch, 2009). Another method is to rely on fit indices or log likelihood tests to identify the 

correct covariance structure (Ferron et al., 2002; Kesselman et al., 1999). The study investigated 

both of these methods and their application to single-case data. 

Problem Statement  

Single-case research has traditionally been left out of meta-analytic studies, due to the 

lack of agreement on the best way to meta-analyze single case data (Faith, Allison, Gorman, 

1996; Van den Noortgate & Onghena, 2008). Meta-analysis of single case designs would not 

only allow for the understanding of generalizability, or the treatment effect across studies, but it 

also affords researchers the benefit of  understanding how the treatment’s effect relates to 

specific individuals within a particular study.  Meta-analyses generally have three goals. 1) 

Meta-analytic studies strive to provide a point estimate of the average effect size, in short, a 

quantitative summary. 2) Meta-analyses strive to provide confidence intervals in which the 

“true” population effect size is likely to be found. The confidence interval can then aid in the 
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decision as to whether the effect size is significantly different from zero. 3) Meta-analytic 

techniques can help the researcher search for variables, or moderators, that could help explain the 

differences or variability among effect sizes. This is the case in which there is a substantial 

variability among the effect sizes.  

Recently, the investigation of the Van den Noortgate and Onghena’s (2008) three-level 

meta-analytic model has increased and shown promising results (Owens & Ferron, 2011; Ugille, 

Moeyaert, Beretvas, Ferron, & Van den Noortgate,  2012 ). These studies have shown the fixed 

effects tend to be unbiased and the variance components have been problematic across a range of 

conditions. Based on a thorough literature review, no one to date has looked at the model in 

relation to the use of fit indices or log likelihood tests to select an appropriate level-one error 

structure. Furthermore, no one has looked at the consequences of general misspecification of the 

level-one error structure when meta-analyzing single case raw data using the three-level model. 

Therefore, it is necessary to investigate whether the work that was conducted in the broader 

repeated measures designs can be applied to smaller samples designs such as single case 

research. 

Study’s Purpose 

There have been a multitude of articles analyzing fit indices and properly identifying the 

correct covariance structures in terms of the broader longitudinal area, or growth curve models. 

A thorough literature search has produced no studies to date looking at fit indices in terms of 

single case research using multi-level models. Moreover, there has been no research on the 

consequences of different forms of specification of the level-one error structure when using a 

three-level meta-analytic single-case model.  
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The purpose of the study was two-fold: 1) to determine the extent to which the various fit 

indices can correctly identify the level-one covariance structure; and 2) to investigate the effect 

of various forms of misspecification of the level-one error structure when using a three-level 

meta-analytic single-case model. The research questions of interest are as follows: 

Research Questions 
 

1. To what extent do fit indices (AIC, adjusted AIC, BIC, log likelihood ratio test) correctly 

identify level-one covariance structure when using a three-level meta-analytic single-case 

model? 

2.  To what extent are the fixed effect parameter estimates from a three-level meta-analytic 

single-case model biased as a function of design factors (number of primary studies per 

meta-analysis, number of participants per primary study, series length per primary study), 

data factors ( variances of the error terms, covariance structures, level of the treatment 

effect), and analysis factors (form of specification)? 

3. To what extent are confidence interval width and coverage for the fixed effects from a 

three-level meta-analytic single-case model affected as a function of design factors 

(number of primary studies per meta-analysis, number of participants per primary study, 

series length per primary study), data factors (variances of the error terms, covariance 

structures, level of the treatment effect), and analysis factors (form of specification)? 

4. To what extent are the Type I error and power for the test of the fixed effects from a 

three-level meta-analytic single-case model affected as a function of design factors 

(number of primary studies per meta-analysis, number of participants per primary study, 

series length per primary study), data factors (variances of the error terms, covariance 

structures, level of the treatment effect), and analysis factors (form of specification)? 
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5. To what extent are the variance component parameter estimates from a three-level meta-

analytic single-case model biased as a function of design factors (number of primary 

studies per meta-analysis, number of participants per primary study, series length per 

primary study), data factors (variances of the error terms, and covariance structures, level 

of the treatment effect), and analysis factors (form of specification)? 

6. To what extent are confidence interval width and coverage for the variance 

components from a three-level meta-analytic single-case model affected as a function of 

design factors (number of primary studies per meta-analysis, number of participants per 

primary study, series length per primary study), data factors (variances of the error terms, 

covariance structures, level of the treatment effect), and analysis factors (form of 

specification)? 

Overview of the Study 

This study used Monte Carlo simulation methods to address the aforementioned research 

questions. Multiple design, data, and analysis factors were manipulated in this study. The study used 

a 2x2x2x2x2x5x7 factorial design. The conditions are briefly introduced here, but were explained 

with great detail later in Chapter Three. Seven experimental variables were manipulated in this 

study. 1) The number of primary studies per meta-analysis (10 and 30);  2) The number of 

participants per primary study (4 and 8);  3)The series length per participant (10 and 20);  

4)Variances of the error terms (most of the variance at level-one: [σ2=1; Σ� = 0.5, 0.05, 0.5, 0.05;  Σ� 

= 0.5, 0.05, 0.5, 0.05] and most of the variance at the upper levels: [σ2=1; Σ� =  2, 0.2, 2, 0.2;  Σ� =  

2, 0.2, 2, 0.2]);  5) The levels for the fixed effects (0, 2 [corresponding to the shift in level]; and 0, 

0.2[corresponding to the shift in slope]) 6)Various types of covariance structures were used for data 

generation (ID, AR(1), and ARMA (1,1); and 7) The form of model specification [i.e. ID, AR(1), 
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ARMA (1,1)], and error structure selected by AIC, AICC, BIC, and the LRT. For each of the 160 

data and design conditions, 5000 simulated data sets were generated using SAS IML (SAS Institute, 

Inc., 2008). These data sets were then specified using the a priori model selection of the level-one 

error structure and the use of fit criteria or post hoc model selection of the level-one error structure. 

This study examined the fixed effects, (i.e., the overall average baseline level, the overall average 

treatment effect, the overall average baseline slope, and the overall average difference between 

baseline and treatment slope) and the variance components (e.g., the between-person within-study 

variance in the average baseline level, the between-person within-study variance in the average 

treatment effect, the between-person within-study variance in the average baseline slope, the 

between-person within-study variance in the average difference between baseline and treatment 

slope, the between-study variance in the average baseline level, the between-study variance in the 

overall average treatment effect, the between-study variance in the overall average baseline slope, 

and the between-study variance in the average difference between the baseline and the treatment 

slopes) in a three level multi-level model.   

Significance of Study 

This study contributed to the ongoing debate of autocorrelation and single-case designs.  

Moreover, this study provided another method, or opportunity, to include single-case designs in 

meta-analyses. For methodologists, this study can serve to demonstrate the importance of 

selecting the correct level-one error structure, and how the error structure can impact the 

parameter estimates and inferences made from those estimates. For the applied researcher and 

practitioner, this study can serve to illustrate how fit indices can be used to select the correct 

level-one error structure. Additionally, this study can serve to demonstrate the difference 

between selecting the error structure a priori or using fit indices, and the impact of the correct 
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level-one error structure on the parameter estimates obtained from the model. This study serves 

also in terms of the some design features that can better allow for the meta-analysis of single-

case designs. Some of these issues include sample size on all three levels and baseline stability. 

The conditions in this study serve to not only replicate and extend previous research in 

the methodological area. The conditions were also chosen to represent current applied works in 

this area. Specifically, the conditions that were used in this study were drawn from a 

combination of methodological works and applied meta-analysis that were done using multi-

level models.  

Several aspects of this study distinguish it from previous works that have investigated the 

three-level model to meta-analyze single-case data. One primary aspect is the appropriate use of 

fit indices to determine the correct model specification when dealing with small samples, i.e. 

single case designs. Additionally, the consequences of misspecifications of the level-one error 

structure were examined when meta-analyzing single case research.  

Limitations  
 

The data in this study were simulated based on specific design conditions. Those 

conditions were chosen based on a review of single-case literature, meta-analyses of single-case 

data, and applied work that was done using the three-level model to aggregate data across 

studies. The specific conditions chosen for this study are only a portion of the possible options 

that could have been included in this study. Therefore, the results of this study can only be 

generalized to studies with similar conditions. Any conclusions beyond the observed conditions 

should be interpreted with caution.  
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Table 1 
Design Factors and Level for each Factor 
    Error Variances  
    Most Variance at Level-1: 

[σ2=1; Σ� = .5, 0.05, .5, 0.05;  Σ� 
= .5, 0.05, .5, 0.05] 

 Most variance at the upper levels: 
 [σ2=1; Σ� =  2, 0.2, 2, 0.2;  Σ� =  2, 
0.2, 2, 0.2] 

    Data Generation  
    σ  = 

ID 
 σ  = 
AR(1) 

σ  = 
ARMA 
(1,1) 

 σ  = ID  σ  = 
AR(1) 

σ  = 
ARMA 
(1,1) 

    Model Specification  
    σ  = ID 

σ  = 
AR(1) 
σ  = 
ARMA 
(1,1) 

σ  = ID 
σ  = 
AR(1) 
σ  = 
ARMA 
(1,1) 

σ  = ID 
σ  = AR(1) 
σ  = 
ARMA 
(1,1) 

 σ  = ID 
σ  = 
AR(1) 
σ  = 
ARMA 
(1,1) 

 σ  = ID 
σ  = 
AR(1) 
σ  = 
ARMA 
(1,1) 

σ  = ID 
σ  = AR(1) 
σ  = 
ARMA 
(1,1) 

Number of 
Participants 
per Meta-
Analysis 

Number of 
Participants 

Number of 
Observations 

Level 
for 
the 
Fixed 
Effect 

       

10 4 10 0        
   2        
  20 0        
   2        
 8 10 0        
   2        
  20 0        
   2        
30 4 10 0        
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Table 1 (Continued) 
Design Factors and Level for each Factor 
 Number of 

Participants 
Number of 
Observations 

Level for 
the Fixed 
Effect 

       

           
   2        
  20 0        
   2        
 8 10 0        
   2        
  20 0        
   2        
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Definition of Terms 
 
Autocorrelation.  The extent to which the values of the observed behavior at time t (Yt) are 

correlated with values at t – i, or Y (t-i) (Matyas & Greenwood, 1996). 

Bias. The difference between a known parameter and an expected parameter estimate, E(�). 

Confidence interval coverage. The proportion of 95% confidence intervals that contain the 

estimated parameter. This outcome was aggregated across replications within each condition to 

represent the average confidence interval coverage. 

Confidence interval width. The difference between the upper and lower limits of the 95% 

confidence intervals for the estimated parameter. This outcome was aggregated across 

replications within each condition to represent the average confidence interval width.  

Effect size. A measure of the magnitude of the relationship between two variables. 

Fit Indices. Akaike Information Criterion (AIC, closer to zero), Adjusted Akaike Information 

Criterion (AICC, closer to zero), Bayesian Information Criterion (BIC, closer to zero), and Log 

likelihood ratio test (LRT, statistically significant at α = .05). These indices will determine the 

best model to approximate the data. 

Fixed effects. Parameter estimates of the coefficients represented in the multi-level model [e.g. 

overall baseline level, overall average treatment effect (shift in level), overall baseline slope, and 

overall treatment effect for the slopes (difference in slopes)] 

Hierarchical Linear Modeling (HLM). This term is commonly referred to as multi-level 

modeling. Multi-level modeling can include two levels: 1) a level-one submodel that describes 

an individual’s change over time; and 2) a level-two model that describes how these changes 
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vary across individuals. Together, these two levels of equations represent a multi-level statistical 

model (Raudenbush & Bryk, 2002). This technique is useful when dealing with nested data. 

Kenward-Roger Degrees of freedom method. This method was developed as an extension of the 

Satterthwaite method to approximate the degrees of freedom; it adjusts for small sample sizes 

and works well with complex variance structures (Ferron, Bell, Hess, & Hibbard, 2009). 

Mean-Square Error. A measure of the average squares of error.  

Meta-analysis.  The quantitative synthesis of study results that involves combining study 

outcomes across studies to evaluate and summarize research findings. 

Non overlap of all pairs (NAP). This new index summarizes data overlap between each of the 

data points in Phase A and each of the data points in phase B. 

Over-specification. This is a form of misspecification, but explicitly involves the model that 

specifies a more complex level-one error structure than the level-one error structure of the data 

(e.g. a model that specifies σ = AR(1), when the true level -1 error structure σ = ID). 

Percentage Exceeding the Median (PEM). Describes the percentage of phase B (intervention) 

data points exceeding the median of the A phase (baseline). 

Percentage of All Non-Overlapping Data (PAND). This is defined as “percent of all data 

remaining after removing the minimum number of data points which would eliminate all data 

overlap between phases A and B. 

Percentage of Non-Overlapping Data (PND). The percentage of phase B (treatment) data points 

which exceed the single highest phase A (baseline) datum point (or below if the lowest point of 

data points in the baseline phase if the undesirable outcome or behavior is expected to decrease) 

(Scruggs & Mastropieri, 1998). 

Primary Studies. The original studies that comprise the sample for the meta-analysis. 
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Randomization design. Refers to the presentation of alternative interventions in random order, 

usually with the restriction that the conditions are presented an equal number of times (Kazdin, 

2011). 

Satterthwaite degrees of freedom method. A method to approximate the degrees of freedom that 

was developed to be used with unbalanced designs and complex error structures. 

Series length. The level-one sample size for the participants in single-case research. This is also 

referred to as the number of observations or measurements. 

Single-case research. The repeated measurement of a case or participant across multiple time 

points, to assess the treatment’s effect on one specific case or participant. 

Treatment effect. The change in the outcome variable as a response to being in the intervention 

phase. This can refer to the change in level or the change in slopes.  

Under-specification.  This is a form of misspecification, but explicitly this involves the model 

that specifies a simpler level-one error structure than the level-one error structure of the data [e.g. 

a model that specifies σ = ID when the true level-one error structure is σ = AR(1) ]. 

Variance components. The parameters that estimate the variation within person, between persons 

within studies, and between studies.
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CHAPTER TWO:  LITERATURE REVIEW  
 

 
This literature review was divided into four parts. First, a brief overview of single-case 

designs was provided. Secondly, the analysis techniques for primary single case studies were 

described. Third, the various methods for synthesizing single case data across studies, 

particularly using multi-level modeling were discussed. Lastly, the examination of the selection 

of the level-one error structure: either through the use of fit criteria, selecting level-one error 

structure a priori, or conducting a sensitivity analysis. 

Single-Case Designs 

In large group studies, focus is generally placed on the average amount of change across 

groups from pre-treatment (or pre-intervention) to post-treatment. Focusing on this type of 

change can cause one to miss the opportunity to understand how, why, and when such a change 

has occurred (Barlow, Nock, & Hersen 2009). Single-case interventions allow for the repeated 

measurement of a case or participant across multiple time points, or in other words, to assess the 

treatment’s effect on one specific case or participant. The most fundamental design element of 

single-case research is the reliance of repeated observations or measurements of performance 

over time for each participant. The basic interrupted time series design includes two phases: the 

baseline and treatment phases. The baseline (pretreatment) phase consists of a series of 

observations preceding the introduction of a treatment. The baseline phase serves two primary 

functions: 1) to describe the existing level of performance that is to be altered; and 2) to serve as 

the basis for which predictions can be made for the participant if the intervention had not been 
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introduced. The treatment phase also consists of a series of observations following the 

introduction of a treatment. Inferences about the research are usually made about the effects of 

the intervention by comparing the different conditions (baseline vs. treatment) presented to the 

same participant or many participants over time (Kazdin, 2011).  

Design Characteristics 

 There are many designs that can be used in single case research. These designs influence 

or attempt to reduce the internal validity threats that can be present in this type of research.  

These designs include, but are not limited to, the basic AB design, the repeated ABAB design, 

the alternating treatment design, and the multiple baseline designs (Barlow et al., 2009; Kazdin, 

2011). Kazdin (2011) used the ABAB design to illustrate the key elements present in many of 

the commonly used single-case designs. The simple ABAB design examines the effect of an 

intervention by alternating the baseline condition, which is referred to as the A phase, and the 

treatment condition, also known as the B phase. The A and B phases are then repeated again. 

Ideally, one would observe that the behavior increased (given that is what the researcher 

hypothesized) when the participant(s) were in the B phase and then returns back to its original 

baseline levels once the intervention has been withdrawn or removed. Finally, the performance 

again increases in the last treatment, or B phase (Kazdin, 2011). This commonly used design 

attempts to control for various threats to internal validity. More specifically, looking at the 

intervention and then withdrawing the intervention and adding the intervention again reduces the 

likelihood that an external event could have caused the observed changes. The design only leaves 

one plausible explanation--the intervention caused the observed change. Figure 1 shows an 

example of an ABAB design where the author’s purpose was to examine the relationship 

between social stories and undesirable behavior. More specifically, the researcher sought to 
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 Figure 1. An example of an ABAB graph for an undesirable behavior. 
ABAB design with the use of social stories to reduce the undesirable behavior.
 

Another complex design involves one phase c

multiple participants or settings. This single case design, called the multiple

time-series data from multiple participants (or behaviors, or settings) where an intervention is 

staggered to occur at different time points within the various time series (Ferron,

Hibbard, 2009). This allows for several cases or settings to be analyzed simultaneously within a 
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investigate if social stories could reduce undesirable behaviors in a student with autism. The 

figure displays the first and third phases as the baseline phases, followed by the second and 

fourth phases (intervention phases). During the intervention, both social stories were read for the 

student to remind him of appropriate social behaviors (Figure 1 adapted from Lorimer & 

Simpson, 2002). The ABAB design characteristics are similar across many single case designs.

An example of an ABAB graph for an undesirable behavior. This figure illustrates the 
ABAB design with the use of social stories to reduce the undesirable behavior. 

Another complex design involves one phase change, from A phase to B phase, across 

multiple participants or settings. This single case design, called the multiple-baseline, includes 

series data from multiple participants (or behaviors, or settings) where an intervention is 

different time points within the various time series (Ferron,

This allows for several cases or settings to be analyzed simultaneously within a 

udent with autism. The 

figure displays the first and third phases as the baseline phases, followed by the second and 

fourth phases (intervention phases). During the intervention, both social stories were read for the 

cial behaviors (Figure 1 adapted from Lorimer & 

ross many single case designs. 

This figure illustrates the 

hange, from A phase to B phase, across 

baseline, includes 

series data from multiple participants (or behaviors, or settings) where an intervention is 

different time points within the various time series (Ferron, Bell, Hess, & 

This allows for several cases or settings to be analyzed simultaneously within a 
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study. Additionally, Kazdin (2011) describes multiple-baseline designs explaining that the 

effects are demonstrated by introducing the intervention to different baselines, whether that is 

behaviors or persons. If each baseline changes, and the expected outcome occur, each time the 

intervention occurs then we can feel more comfortable with attributing the effect to the 

intervention, rather than to extraneous factors. Multiple-baseline designs do not share the 

practical or ethical issues with some of the other designs, such as the ABAB design. The 

intervention does not need to be withdrawn once the intervention is introduced to a particular 

baseline.  

The power of these designs is illustrating that the expected change occurs only when the 

treatment or intervention is directed at the behavior, setting, or subject (Barlow et al., 2009). 

Figure 2 (adapted from Ferron et al., 2009) below illustrates a graph of a multiple baseline 

design. The multiple-baseline design is the most commonly used design in the single case 

research. Shadish and Sullivan (2011) located, digitized, and coded 809 single case designs from 

113 studies in 2008 in 21 different journals in a variety of fields including psychology and 

education. They found that the majority of single-case designs included some form of multiple 

baseline design, either alone or in combination with another design. Moreover, approximately 

79% of the single case studies included some form of multiple baseline design. 

Analysis Alternatives 

There are several methods for analyzing single-case data. The next few sections will 

review a portion of the commonly used methods for the analysis of single-case research. 

Visual Inspection or Analysis. Kazdin (2011) refers to visual inspection as reaching a 

judgment about the reliability or consistency of intervention effects by visually examining the 

data. The author goes on to describe the experimental criterion as a comparison of performance 
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during the intervention with what the performance would look like if the intervention had not 

been implemented. Visual analysis has been the primary analysis for single case data (Busk and 

Marascuilo, 1988; Fisch, 2001; Kazdin, 2011). 

Figure 2. Multiple-Baseline Design adapted from Ferron, Bell, Hess, & Hibbard, 2009 
 

 

 

 
Figure 2. Visual graphs 3 participants in a multiple-baseline study. Notice that the 3 
participants have different lengths in terms of baselines and treatments. 

 

 

In a survey and review of single case literature, Busk and Marascuilo (1988) found that 

visual analysis was still the dominant form of analysis used in single case research designs, and 

furthermore Kazdin (2011) recently describes visual inspection as the primary method of data 
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evaluation in single-case research. Proponents of visual analysis argue that visual analysis have 

low Type-I error rates (Brossart Parker, Olson, & Mahadevan, 2006; Gorman & Allison, 1996). 

There has been a reluctance to the sole use of visual analysis because the lack of inter-rater 

reliability or the high incidence of judges’ error that has been seen in several studies. Past 

research had found that reliabilities tend to be low to moderate (Brossart et al., 2006). Brossart et 

al. (2006) conducted a study to test the inter-rater reliability among 15 experienced judges in 

determining the extent of the intervention effect. They found that their inter-rater reliability was 

very poor, unless the intervention effect was substantial, which could be easily identified by the 

visual analyst.  Furthermore, low reliabilities and high response bias has been noticed 

increasingly when the intervention effect involves trends (Fisch, 2001). The author conducted a 

review of a multitude of studies that investigated visual analysts’ capabilities of determining a 

treatment effect in the presence of complex data, such as when treatment effect involved both 

shift in level and shift in trends, in the presence of autocorrelated errors. Fisch (2001) concluded 

that the most striking feature across all of the studies that were reviewed is the participants’ 

inability to detect trends when they were present alone or in combination with a shift in level 

treatment effect. This finding supported the low inter-rater reliability found in past literature. 

This low inter-rater reliability, more specifically when the data are complex, such as in the 

presence of autocorrelated errors, have been the cause of many disputes among researchers who 

have argued that visual analysis is not enough to detect intervention effect (Brossart et al., 2006; 

Huitema, 1986; Kazdin, 2011).   

Knowing that serial dependence may be present in single case data, visual analysis alone 

may not be sufficient. Visual analysis and inspection cannot account for the underlying trend or 

pattern that may exist within the data due to autocorrelation (Huitema, 1997; Kazdin, 2011; 
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Matyas & Greenwood, 1990). Likewise, visual analysis cannot discern whether an intervention is 

effective above and beyond some underlying pattern that would exist in the presence of 

autocorrelation. In the aforementioned study, Matyas and Greenwood (1990), the aim was to 

examine the false alarms and miss rates in simple designs, such as AB panels, using visual 

analysis. Serial dependence in the time series was also systematically varied to determine its 

effect on rater reliability. A sample of 37 graduate students were asked to make judgments (void 

of intervention effect, a level change, a trend change, combined level and trend change, or other 

type of systematic change during intervention) on 27 charts. Variations in false alarms had a 

significant interaction effect with degree of serial dependence. Conversely, this was not the case 

with miss rates.  Most of the miss rates were below 10%. This study contributed to the idea that 

the conservatism by visual analysts may be compromised in the presence of serial dependent 

data. In a much earlier study, Jones, Weinrott, and Vaught (1978) asked 11 experienced judges to 

visually analyze 24 graphs from a reputable journal. The majority (83%) of the graphs had 

statistically significant (p <.05) lag-1 autocorrelation that ranged from .40 to .93. The judges had 

to determine if a “meaningful” shift in level had occurred. Meaningful solely referring to the 

reliability of change.  The authors found the agreement of visual judges with times series 

analysis would be lowered when serial dependence existed in the data and when statistically 

significant results were found by the times series analysis. This is shown to be problematic given 

the fact that autocorrelation or serial dependence is likely to exist in single-case designs and one 

would hope that the shift in level or treatment effect is statistically significant.  

Visual judges may have trouble identifying intervention effects other than shifts in level 

or changes in linear trend. These issues seem even more prominent when short series lengths are 

introduced, as is common with single case designs (Matyas & Greenwood, 1996). The difficulty 
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in determining whether or not there is a treatment effect using visual analysis continues to be an 

important concern in the literature, and this concern is magnified in the presence of correlated 

errors. 

Matyas and Greenwood (1990) explicated that visual analysis tends to become too liberal 

when positive autocorrelation is present, thereby increasing our Type I errors. Negative 

autocorrelation tends to produce more conservative values for visual judgment. Finally, the 

current verdict is that serial dependence or autocorrelation may exist and should be taken into 

account when evaluating single-case data (Kazdin, 2011). Given this conclusion, and the issues 

that correlated errors may pose to the visual analyst, it seems reasonable, or almost necessary to 

supplement visual analysis with some statistical technique (Barlow et al., 2009; Kazdin, 2011). 

Overlap Statistics. Another type of analysis that complements the visual analysis is non-

regression type indices or effect sizes, sometimes referred to as overlap statistics. This analysis 

category contains a few options. The percentage of non-overlapping data (PND) effect size 

measure can be explained as the percentage of phase B (treatment) data points which exceed the 

single highest phase A (baseline) data point (or below the lowest point of data points in the 

baseline phase if the undesirable outcome or behavior is expected to decrease). One conceptual 

advantage is in its meaningfulness to practical researchers; for example, PND scores of over 90 

(i.e. 90% of treatment observations exceed the highest baseline observation) (Scruggs & 

Mastropieri, 1998). 

 The Percentage of All Non-Overlapping Data ( PAND) is defined as the percent of all 

data remaining after removing the minimum number of data points which would eliminate all 

data overlap between phases A and B. There are several other non-parametric effect sizes used in 

the single case literature. PAND has similar features to PND, however, avoiding some of the 
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major criticisms. First, PAND uses all of the data from both the baseline and the treatment 

phases. More importantly, PAND can be translated to reflect an actual effect size, such as 

Pearson’s Phi or Phi2 (Parker, Hagan-Burke, Vannest, 2007). The percentage exceeding the 

median (PEM), describes the percentage of phase B (intervention) data points exceeding the 

median of the A (baseline) phase. The null hypothesis of this approach is if the treatment has no 

effect, then the points will fluctuate around the middle line. Namely, the points have a 50% 

chance of being above or below the median of the previous baseline phase (Ma, 2006). The 

author proposed the PEM as an approach to compensate for some of the shortcomings of PND; 

one such example is in the presence of ceiling or floor data points in the baseline.  

Recently, Parker and Vanest (2009) introduced a fourth measure: non overlap of all pairs 

(NAP). This new index summarizes data overlap between each of the data points in Phases A 

and B. A non-overlapping pair will have a treatment (or B phase) data point that is higher than its 

corresponding baseline (or A phase) data point. They designed this new index to remedy the 

perceived weaknesses of the other indices. These shortcomings include a) lack of knowledge 

regarding the  underlying distribution, which then makes it difficult to calculate a confidence 

interval around the effect size (PND);  b) a weak relationship between other known effect sizes 

(PEM); c) low ability to discriminate among published studies (PEM, PND); d) low power for 

single case designs, which typically have short series length (PND, PAND, PEM); and e) the 

other indices rely highly on visual analysis, which can lead to human error in hand calculations 

from the graphs (PND, PAND, PEM) (Parker & Vanest, 2009). The authors found that the NAP 

was loosely comparable with the previously mentioned effect sizes. The authors concluded that 

PAND was the strongest index, with the greatest precision and power. Howbeit, none of the 

indices could discriminate for a large number of samples, particularly among the more successful 
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interventions (Parker & Vanest, 2009). Another common shortcoming among these indices is 

that the overlap statistics does not handle intervention effects that involve trends. 

Randomization Tests. In recent years, there has been increased attention to the use of 

statistical methods that do not rely on the traditional parametric assumptions (Barlow et al., 

2009).  One of the greatest advantages to randomization tests is that no assumptions need to be 

made about the data. For example, it is a distribution-free test statistic. Distribution-free tests that 

rely solely on the information from the sample have gained increased interest in recent decades 

(Barlow et al., 2009). The randomization design refers to the presentation of alternative 

interventions in random order, usually with the restriction that the conditions are presented an 

equal number of times (Kazdin, 2011). Due to the random assignment of the intervention on any 

particular day, the results are amenable for several statistical tests (Edgington, 1996). 

In single-case designs, a true experiment can be distinguished from a quasi-experiment 

by the use of random assignment of treatment to measurement occasions (Onghena & Edginton, 

2005). There are two types of randomization schemes: alternation randomization and phase 

randomization. The latter is commonly used in behavioral and educational interventions. The 

implementation of the phase randomization occurs when the intervention is optimally introduced 

over the course of several measurement occasions occurring in a predetermined order, or when 

the order of the introduction of the intervention is predetermined, i.e. baseline phase comes 

before intervention phase (Onghena & Edginton, 2005). 

The logic behind these tests is simple: the null hypothesis is if the intervention has no 

impact on the observed dependent variable, then the actual observations are not influenced by the 

intervention, therefore the observed scores simply reflect naturally occurring scores. The data are 

then analyzed by looking at all possible permutations, or combinations, that could have occurred. 
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All of the possible outcomes make up the randomization distribution (Barlow et al., 2009). When 

the order in which the treatments are applied is random, then the design meets the criteria of a 

randomization design (Kazdin, 2011). Baseline conditions count as a possible treatment phase. 

Then one can see how randomization can be extended to include the multiple-baseline design. 

Kratochwill and Levin (2010) conducted a study in which the primary purpose was to provide 

scientifically credible extensions of various types of single case designs that incorporated 

randomization. The authors concluded that incorporating some type of randomization in even the 

most basic type of single case design, such as the AB design could increase the internal validity 

of the study and allow investigators to draw more valid inferences. 

The discussion of randomization tests and power is a significant one in the literature. 

Ferron and Onghena (1996) estimated the power of randomization tests used with single-case 

designs involving random assignment of treatments to phases. The authors simulated 120 

conditions crossing 6 effect sizes (0, 0.2, 0.5, 0.8, 1.1, and 1.4); 4 levels of autocorrelation (0, 

0.3, 0.6, -0.3); and 5 phase lengths (4, 5, 6, 7, and 8). The authors found that estimating power 

depended not only on the type of design, but there was an interaction effect between type of 

design and autocorrelation. Positive autocorrelation led to greater power in the random 

assignment of treatments to phases design; while negative autocorrelation had the opposite 

effect. Based on this study, researchers should explore ways of increasing the power of 

randomization tests used in conjunction with treatment to phase designs.   

Although randomization tests have shown to be efficient, there are limitations. The first 

of those limitations is related to the statistical power. For the phase design, the power is 

approximately 10% less than that of an ordinary t-test (Ferron & Onghena, 1996). Phase 

randomization designs gain increasing power with increasing phase changes; however, the 
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researcher needs to determine how many observations are necessary for each of the phases. 

Another limitation is there may be instances where the number of observations, outcome 

measurements, and materials may need to be increased in order to get the correct number of 

desired comparisons between the AB phases (Kratochwill & Levin, 2010). Randomized designs 

may also limit the kinds of statistical analysis that are applied to the data. Non-parametric 

methods are applicable; nonetheless, these tests require a sufficient number of observations or 

phases to have adequate power to detect an intervention effect (Ferron & Onghena, 1996; 

Kratochwill & Levin, 2010). Randomization tests can tell us that, yes, there is an effect. 

However, in order to explore the size or precision of that effect, parametric methods are 

necessary.  

Classical Statistical Modeling. Singer and Willett (2003) described a statistical model as 

mathematical representations of population behavior. The authors go on and explain that the 

models describe salient features of the hypothesized process of interest among individuals in the 

target population. In order to describe these processes and make statements about the 

populations, statistical models are expressed using parameters, such as intercepts, slopes, and 

variance components. Gentile, Roden, and Klein (1972) first suggested the use of statistical 

models, such as t-test or an ANOVA based method for modeling the treatment effect for single 

case designs. However, even with the simplest design in mind, the AB design, the assumptions 

of analysis of variance and regression analysis are likely to be violated. The first assumption is 

normal distributions and equal variances of scores within each level of the independent variable. 

This may be violated given the treatment effect may alter not only the means, but the 

distributions of the dependent variable, such as the variance, skewness, and kurtosis (Gorman & 

Allison, 1996). 
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Regression based approaches have also been suggested as a possible option to compare 

the intervention between the baseline and the treatment phases (Huitema & McKean, 1998). 

Equation 6 represents an outcome (Yi) that is modeled on time point i for each participant. β0 is 

the expected score (baseline) for each participant. The expected treatment effect (the difference 

in means for the baseline and treatment phases) for the participant is represented by β1.  Phase is 

a dichotomous variable that is coded 0 for baseline and 1 for treatment phase. The within phase 

error is modeled by ei (σ
2
e  represents the variance of  ei).  

Y i = β0 + β1*phase + ei           (6) 
 

Equation 6 is the most basic model and can be further extended to include terms to 

evaluate trends in both the baseline and the treatment phases (Center, Skiba, & Casey, 1985-

1986; Huitema & McKean, 2000). This is modeled by the following equation:  

Regression equation including trends for both phases: 
 
Y i = β0 + β1*phase+ β2* time + β3*phase*time + ei        (7) 
 

Again, this model is an extension of the model above, with the difference being now this 

model controls for time and the interaction of time with the treatment effect. The first two 

coefficients or fixed effects of the model have similar interpretation as above, but now 

controlling for time. In other words, the β1 (phase effect) now represents the level shift at a 

particular point in time. The phase effect can greatly vary depending on which time point is 

chosen. Moreover, β1 is the difference between two predicted values (one for the baseline 

regression and one for the phase regression) based on all data both before and after intervention. 

Specifically, the β1 is the value of Ytreatment predicted at the first point in treatment minus the 

Ybaseline at the same time point, i.e. first time point in treatment; this difference is an estimate of 

the level change associated with an intervention (Huitema & McKean, 2000). Additionally, β2, 
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now represents the baseline’s slope, or the trend during the baseline phase; and similarly, β3, 

represents the difference in trend (or slope) between the baseline and the treatment phases at a 

particular point in time.  

Although both the ANOVA and regression type approaches have been suggested as 

analysis options, the greatest concern is the violation of the assumption of independent residual 

errors. In single case designs, there would be likely to have some carry over from one time point 

to the next. For example, students may remember concepts from previous sessions; may feel ill 

or sick one day that could affect the next several days; or drug interventions may take some time 

to “wash out”. These are examples of what we would call serially dependent data, or 

autocorrelation which was explained earlier in the chapter. Specifically, statisticians would say 

that these behaviors, and thus the residuals from the statistical models, are correlated due to 

successive scores are more similar to each other than would be predicted by chance (Gorman & 

Allison, 1996). Ostrom (1990) showed that as autocorrelation of residuals increases, computed t-

tests for regression weights values may be biased. Moreover, he showed that with modest 

autocorrelation (> .4) that the observed value would be more than twice the true t-value. When 

there is positive autocorrelation, the standard errors tend to be smaller, thus leading to more Type 

I errors or false rejections. On the other hand, when autocorrelation is negative, then the standard 

errors tend to be larger, thus this will lead to smaller F-values and t-values, causing increasing 

Type II errors or misses (Kazdin, 2011; Matyas & Greenwood, 1990). Another concern with the 

use of the traditional t- or F-tests is regarding trends. These parameters are calculated based on 

means and variances alone, they are strongly discouraged when trends are present in the data 

(Barlow et al., 2009).  
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To combat some of the issues related to correlated errors, a generalized least squares 

(GLS) method was proposed. This method would allow for the flexibility of the regression type 

approaches, while also controlling for the serial dependency among the data. Maggin et al., 

(2011) described three general criteria that effect sizes must have: 1) effect sizes must be 

consistent with the logic of visual analysis; 2) it must control for threats to interpretation, such as 

autocorrelation and within-phase trends; and lastly, 3) the effect size must have certain statistical 

properties, i.e. readily interpretable by researchers from a variety of fields. The authors posit that 

an ideal effect size would provide the flexibility of regression type methods while also modeling 

autocorrelation.   

GLS allows researchers to model autocorrelation, using some basic assumptions that are 

similar to the assumptions used in other statistical analyses. Effects sizes are derived using a 

four-step process which includes a model to control for autocorrelation, regression lines 

estimated for both phases for comparison, GLS regression used to calculate an effect size taking 

into account the slope and intercept parameters between phases, and finally, the overall effect 

size utilized in hypothesis testing (Maggin et al., 2011). The author’s second purpose was to 

demonstrate through applied examples that the GLS functioned according to the aforesaid 

criteria of an ideal effect size measure. Specifically, the authors applied the GLS approach to two 

published studies that represented strong visual effects that also displayed significant 

autocorrelation. They found that the GLS effect size did indeed support the visual analyses and 

the GLS regression method did control for threats to interpretation, such as the presence of 

autocorrelation. They also found several limitations to the GLS methods. The authors suggested 

that more work needed to be done in finding the most appropriate method for estimating the 

autocorrelation parameter. The authors further concluded that their findings led to an opportunity 
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to find appropriate bootstrapping methods that can be added to the GLS method. Additionally, 

the set of limitations also included the large amount of data, which may not be feasible in single 

case designs, which are necessary to ensure that the autocorrelation is estimated accurately. 

Researchers need to be aware of each of their individual data patterns (increasing trend in 

baseline, immediate level shift, and a decreasing trend as the intervention continues), for there 

are instances where the parameter estimates could be inaccurate.  

The research presented thus far in this chapter has illustrated that autocorrelation can 

affect the decision made regarding the intervention effect when using both visual and statistical 

analyses. The key issue still remains regarding correct model identification for the purpose of 

forecasting and comparing (Matyas and Greenwood, 1996).  There are statistical analyses, such 

as multi-level modeling, that are robust to the violation of independent errors, similar to the GLS 

method. Additionally, the development of hierarchical linear models or multi-level modeling has 

created a powerful set of techniques for research on individual change and change across 

participants, similar to those needed for single case designs (Raudenbush & Bryk, 2002).  

Multi-level Modeling. The basic regression model is designed for cross-sectional data, 

however, in terms of single-case research, or repeated measures data, a model that embodies two 

types of research questions is necessary. This model addresses the within-person change and the 

between-person differences in change (Singer & Willet, 2003, p. 47).  More specifically, this 

suggests that a model for change must include two levels: 1) a level-one sub-model that 

describes individuals change over time; and 2) a level-two model that describes how these 

changes vary across individuals. Together, these two levels of equations represent a multi-level 

statistical model (Raudenbush & Bryk, 2002) for analyzing primary single case studies. This 

model can further be thought of as an extension of the equations presented earlier. This extension 
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now allows the researcher to synthesize across participants within a particular study. This model 

is represented and explicated: 

Level 1 Equation: 
Y ij = β0j + β1j*phaseij+ β2j* timeij + β3j*phaseij*timeij ’ + eij     (8) 
 

Level 2 Equations: 
β0j = θ00 + u0j            (9) 

β1j = θ10 + u1j                                       �������������
� ~
�0, Σ��     (10) 

β2j = θ20 + u2j            (11) 
β3j = θ30 + u3j           (12) 
 

The score on the dependent variable on measurement occasion i for subject j is Yij.  The 

phase variable is a dummy-coded indicator reflecting whether the observation is in the baseline 

phase (phaseij = 0) or the intervention phase (phaseij = 1). The coefficient for the timeij variable 

represents the slope during the baseline phase, timeij, and the coefficient for the interaction term, 

phaseij*time�ij, reflects the difference between the baseline and intervention phases’ slopes. The 

time variable can be centered in a variety of ways which may be helpful for interpreting the 

model parameters (Baek, Moeyaert, Petit-Bois, Beretvas, Van den Noortgate, & Ferron, 2013).  

Specifically, for this study, the time variable is uncentered for the baseline phase’s slope 

such that for the first measurement occasion in the baseline phase, timeij= 0.  However, the timeij ′ 

variable in the interaction term, phaseij*time�ij is coded such that time�ij = 0 for the first 

observation in the intervention phase. Therefore, the expected score during the baseline phase if 

extended one observation into treatment is equal to β0j; and the expected score of the treatment 

phase at this same point in time is β1j higher. As a result, β1j refers to the immediate level change 

associated with the intervention (Huitema & McKean, 2000). β2j  represents the linear trend 
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during the baseline phase, and the linear trend for the treatment phase was β3j higher.  In other 

words, β3j indicates the effect of the intervention on the trend or the shift in slopes. Both β1j  and 

β3j are needed to fully describe the treatment effect.  The error in the level-one model (eij) can be 

assumed to be normally distributed with some covariance ∑.  However, a variety of alternative 

structures for ∑ can be assumed, including an independent structure (σ2I ) and a first-order 

autoregressive structure [AR(1)].The level-one equation (Equation 8) is similar to Equation 7 

which was previously described, with the exception that now the model is allowed to vary across 

participants. 

It should also be noted that the dependent variable in this study is assumed to be 

continuous. The use of continuous variables in single-case studies is common in terms of 

mathematics achievement (Billingsley, Scheuermann, & Webber, 2009) or words read per 

minute (Tam, Heward, & Heng, 2006). There are various types of outcomes that are commonly 

used in single case studies, such as binary, ordinal, or count outcomes, for example, counting the 

number of times that a student talks out without raising their hands or the number of times that a 

student leaves their seat. These examples would require different types of assumptions using a 

Poisson distribution (Shadish & Rindskopf, 2007; Shadish et al., 2008).  

Many researchers have suggested the use of multi-level modeling to analyze single case 

data, particularly when correlated errors are present in the data (Ferron, Bell, Hess, & Hibbard, 

2009, Raudenbush & Bryk, 2002).  The use of multi-level modeling allows for flexibility in 

handling nesting of observations within a participant, heterogeneous variances, and moderating 

effects (Ferron et al., 2009; Shadish & Rindskopf, 2007; Van den Noortgate & Onghena, 2003).  

Multi-level modeling (MLM) estimates of the individual effects are Empirical Bayes (EB) 

estimates, which depend not only on the data from the individual, but also on the data from other 
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participants. EB estimates are obtained by creating an average of an estimate that is based on 

information solely from that individual and an estimate that is based on the average of all of the 

participants’ data (Raudenbush & Bryk, 2002). Furthermore, the authors, Raudenbush & Bryk 

(2002) pointed out that raw data from a set of single case design studies had a similar structure as 

the two-level meta-analysis for group designs: observations nested within individuals (level one) 

and across participants within a study (level two).  

Van den Noortgate and Onghena (2003) also illustrated the use of a two-level model to 

analyze data in the individual studies in single case designs.  Simulation research has shown 

promising results in terms of utilizing two-level models to analyze single case data (Ferron, Bell, 

Hess, Rendina-Gibioff, & Hibbard, 2009). Kwok, West, Green (2005) described many additional 

benefits to using MLM in the broader context of repeated measures designs. One of the benefits 

that they cite is the ability to look at moderators and cross-level effects. For example, a 

researcher may be interested in looking at whether individual characteristics such as age and 

gender can influence someone’s growth or reaction to an intervention. The second advantage, 

which is more relevant to the present study, is that the covariance matrices of both the between 

subject random effects and the within subject random errors can be flexibly and simultaneously 

modeled.  This notion of modeling different covariance matrices can be extended to analyzing 

primary single-case designs and then extended further to the meta-analysis of single case 

designs.  

The need to model autocorrelation has risen in the single case literature and many 

researchers have conducted Monte Carlo studies addressing the issue of correlated errors when 

using single case designs (Ferron et al., 2009; Ferron, Farmer, & Owens, 2010). The study 

conducted by Ferron et al. (2009) examined the interval estimate of the average treatment effect 
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for two methods of specifying level-one error structure (σ2 I or first-order autoregressive). These 

authors found that under the Kenward-Roger method, the average coverage estimate for the 95% 

confidence interval was the highest, .942, when autocorrelation was modeled versus not 

modeled.  They also found that when autocorrelation was modeled, using Kenward-Roger 

method for estimating degrees of freedom, provided average coverage for the treatment effect 

that was close to the nominal level of .95.  

A general conclusion based on the aforementioned studies is that the fixed effects are 

unbiased when using multi-level modeling with small sample sizes as long as the error structure 

and the degrees of freedom are correctly specified (Ferron, Farmer, & Owens, 2010). This 

conclusion was further investigated with a focus on the individual treatment effects and their 

confidence intervals when using one of three methods of estimating degrees of freedom: the 

Kenward-Roger, the Satterthwaite, or the Containment methods. Ferron, Farmer, and Owens 

(2010) concluded that traditional statistical methods, not accounting for the nested data structure, 

would tend to undercover with positive autocorrelation and the Kenward-Roger method would 

be expected to perform the best when there was a complex error structure. Furthermore, the 

authors summarized their article suggesting that researchers conducting multiple-baseline studies 

with multi-level modeling should use the Kenward-Roger method for estimating degrees of 

freedom (Ferron, Farmer, & Owens, 2010). Researchers are not only interested in analyzing 

single case designs across participants within a study, but there is also an increasing interest in 

analyzing data across single-case studies.  

The Autocorrelation Debate 

The repeated measures design is based on continuous observations over time for the same 

subject. This feature of single case research is a definite strength to this design given that it can 
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allow a researcher to analyze a particular case in depth. However, this can also present 

challenges in terms of choosing an appropriate data analysis method. A variable whose future is 

predictable to some degree from its own values or from the passage of time possesses some form 

of statistical serial dependence. One way to describe autocorrelation is the extent to which the 

values of the observed behavior at time t (Yt) are correlated with values at t – i, or Y (t-i) (Matyas 

& Greenwood, 1996). This generally results in the data having characteristics different than 

taking an observation one or two times, such as in a between subjects design. This difference has 

implications on what assumptions (i.e. the assumption of independence) can be applied to the 

data and what statistical techniques can be used for analysis. The amount of dependence is 

typically characterized by the correlation between adjacent time points. This is referred to as 

autocorrelation, or serial dependency.  

Whether or not single-case data can show serial dependence due to small sample sizes or 

how to best estimate the autoregressive parameters to ensure that they are unbiased due to the 

small n has been debated in the single case literature (Huitema & McKean, 1991).  However, 

studies have shown that there is indeed some correlation beyond random chance in the repeated 

measures design for observations within a single subject (Kratochwill et al., 1974). The study’s 

purpose was to demonstrate that the statistical independence assumption is entirely unwarranted 

in an N=1 (or small sample) design. The authors measured the correlation between time points 

within individuals compared to the correlation between heads or tails when flipping a coin. They 

found that the correlation was substantially higher between time points within the subject. This 

study supports the idea that what a person does at time t is not independent of what he or she had 

done at time t-1, t-2, t-3, etc.  Many studies had continued to analyze the presence of 

autocorrelation in single case research (Busk & Marascuillo, 1988; Huitema & McKean, 1991; 
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Matyas & Greenwood, 1991).  In another study, Busk & Marascuillo (1988) concluded that 40% 

of the baselines and 59% of the intervention phases had autocorrelation coefficients greater than 

.25. Huitema and McKean (1991) also confirmed the inappropriate choice for use in 

standardization used in Huitema (1985)’s original argument. However, the most important flaw 

with the original argument was that the conclusions may have been biased by the inclusion of 

many studies with very short time series (number of observations < 10), which may greatly 

underestimate the extent of autocorrelation (Matyas and Greenwood ,1991).  Matyas and 

Greenwood (1991) also concluded that although the lag 1 autocorrelation may not be as large as 

originally hypothesized; it was clear that the general hypothesis of no autocorrelation cannot be 

sustained.  Matyas and Greenwood (1996) conducted a review of the autocorrelation debate, 

synthesizing the different viewpoints regarding autocorrelation and single case designs. Based on 

their review, they concluded that neither visual nor statistical analyses could assume a simple 

“flat straight line plus random residual” model. Many of the aforementioned studies showed 

support for modeling the autocorrelation, or taking correlated errors into account when analyzing 

single case designs. Although there does seem to be agreement that yes, autocorrelation can exist 

among single-case data, there is still no agreement on the appropriate analysis technique to 

handle correlated errors in single-case data. 

Recently, there has been an emergence of research dealing with autocorrelation in single 

case designs dealing with primary studies (Ferron et al., 2009; Ferron et al., 2010; Owens, 2011) 

and investigating intervention effects across studies, such as a meta-analysis (Baek & Ferron, 

2013; Petit-Bois, Baek, & Ferron, 2013). These studies all have one thing in common: they all 

found that modeling autocorrelation tended to give more precise treatment effects versus not 

modeling the autocorrelation when autocorrelation was indeed present in the population. Given 
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this conclusion, which analysis technique should be used to model autocorrelation when dealing 

with single-case data assuming that autocorrelation does exist? 

Meta-Analysis and Singe-Case Designs 

Treatment effectiveness, not only within studies but across studies as well, specifically 

which factors concerning the interventions are effective, has become a topic of great interest in 

terms of single case research (Beretvas & Chung, 2008; Owens, 2011; Van den Noortgate & 

Onghena, 2008).  One method for addressing these concerns with treatment effectiveness across 

studies has been addressed through quantitative synthesis, or meta-analysis, of the research 

interventions to find which factors have been effective in math intervention research. Glass 

(1976) introduced the term meta-analysis as “the analysis of the results of statistical analyses for 

the purposes of drawing general conclusions” (p.3).  Meta-analyses generally have three goals. 1) 

Meta-analytic studies strive to provide a point estimate of the average effect size, in order words, 

a quantitative summary. 2) Meta-analyses strive to provide confidence intervals in which the 

“true” population effect size is likely to be found. The confidence interval can then aid in the 

decision as to whether the effect size is significantly different from zero. 3) Meta-analytic 

techniques can help the researcher search for variables, or moderators, that could help explain the 

differences or variability among effect sizes, that is, given that there is a large amount or 

substantial variability among the effect sizes.  

Single-case research has traditionally been left out of meta-analytic studies, due to the 

lack of agreement on the best method to meta-analyze single case data (Faith, Allison, Gorman, 

1996; Van den Noortgate & Onghena, 2008). Meta-analysis of single case designs would not 

only allow for the understanding of generalizability, or the treatment effect across studies, but it 

also affords researchers the benefit of understanding how the treatment’s effect relates to specific 
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individuals within a particular study.  Faith, Allison, Gorman (1996) offered additional reasons 

why it is essential to meta-analyze single case data. The authors posited that many interventions, 

particularly behavioral interventions have only been researched or studied in the single case 

context. Therefore, meta-analysis in single case research has to be done in order to know how 

effective these behavioral interventions have been across studies. Faith, Allison, Gorman (1996) 

further concluded that single-case research often leaves the reader wondering whether the results 

of a particular study could be applied to another individual outside of that context or study. 

Meta-analytic studies could then produce an average effect, with a confidence interval, which 

would then inform the reader what an expected effect size would be in other studies.  

Analysis Methods  

There are several methods used for conducting meta-analyses in single-case research. 

There are several meta-analyses that have been done involving single-case research designs; 

however, to date, there has not been a consensus on the best way to synthesize these data.   

Summary Statistics. Beretvas and Chung (2008) conducted a narrative review of 25 

single-case meta-analyses and found that most of the single case or single participant meta-

analysts were using non-parametric approaches.  They further concluded that meta-analysts were 

using the simplest indicators as effect size measures  and non-parametric methods such as 

percentage of non-overlapping data (PND)( Scruggs & Mastropieri, 1998) and percent of all non-

overlapping data (PAND) (Parker et al., 2007) for conducting meta-analysis involving single-

case.  Maggin et al. (2011) suggested that researchers should use both visual and statistical 

analysis when synthesizing across single-case research. 

Regression-based Methods. Regression-type approaches are also commonly used to 

conduct meta-analyses because they offer sophisticated and flexible methods by fitting statistical 
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models to the observed data (Faith, Allison, Gorman, 1996). Gorsuch (1983) concluded that 

trend analysis was the most important analysis in terms of minimizing your Type I and Type II 

errors. The major advantage to his method was that it modeled intervention effect over time. In 

other words, his method allowed meta-analysts to look at the intervention effect above and 

beyond the passing of time. The major shortcoming was that his method did not model change in 

slopes, only change in levels. However, there are interventions where the researcher does not 

only expect there to be a change in level, but also for there to be a change in slope or trend. 

Several researchers have then proposed statistical models that would allow the researcher to 

determine treatment effectiveness when a trend is present in the data (Allison & Gorman, 1993; 

Kromrey & Foster-Johnson, 1996). 

These effect sizes are much more complex. This is due largely in part by the fact that 

trend must be taken into account before analyzing intervention effectiveness (Kromery & Foster-

Johnson, 1996). The authors explicate a method for computing effect sizes, for either shift in 

levels or change in slopes, using a regression based approach when trend is present in the data. 

Kromery and Foster-Johnson (1996) demonstrated that the effect size can be calculated using the 

change of R2 for the two models--the second model taking into account the trend while the initial 

model does not take trend into account. In addition to these well-known approaches, some 

researchers have turned to the use of multi-level modeling as an additional statistical tool for 

synthesizing single case data across studies (Owens, 2011; Ugille et al., 2012; Van den 

Noortgate & Onghena, 2008). 

Multi-level Modeling. In addition to the single-variable effect size indicators and the 

previously mentioned regression type indicators that were being used to meta-analyze single-

case designs, Van den Noortgate and Onghena (2008) proposed that if raw data from several 
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single case designs are used in a meta-analysis, scores can be varied at each of the three levels:  

over occasions (level-one), across participants from the same study (level-two), and across 

studies included in the meta-analysis (level-three).  Equation 13 below describes the variation 

within participants that occurs when treatment conditions are compared with a baseline condition 

(Level 1) allowing trends for both the baseline and treatment phases.  At the second level, the 

variation over participants is shown using four regression equations (Equations 14-17).  Finally, 

the last set of equations describes the variation across the studies (Equations 18-21) that are 

included in this meta-analysis. 

Equations 13-21 below represent the three-level model used to represent the fixed effects 

and the variance components at each of the three levels.  The variable phase is a dichotomous 

variable representing the baseline phase (phaseijk=0) and the treatment phase (phaseijk =1). 

 

 

 
 

Level 2 Equations: 

β0jk = θ00k + u0jk          (14) 

β1jk = θ10k + u1jk          (15) 

β2jk = θ20k + u2jk    ,       (16) 

β3jk = θ30k + u3jk          (17) 

 

Level 1 Equation: 

Y ijk = β0jk + β1jk*phaseijk+ β2jk* timeijk + β3jk*phaseijk*time�ijk + eijk ,  ����~
�0, Σ�� (13) 

�����������������
� ~
�0, Σ�� 
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Combined Model: 
Y ijk = Ƴ000 + Ƴ100*phase + Ƴ200*time + Ƴ300*phase*time’+ v 00k  + v10k  + v20k  + v30k  + u00k  + 
u10k  + u20k  + u30k  +  eijk           

 (22) 
 

In Equation 13, the value of the dependent variable on measurement occasion i for 

subject j of study k (Yijk) is regressed on a dummy variable phase, that equals one if measurement 

occasion i occurs in the treatment phase, otherwise it is equal to 0 in the baseline phase. The 

score on the dependent variable on measurement occasion i for subject j of study k is Yijk.  The 

phase variable is a dummy-coded indicator reflecting whether the observation is in the baseline 

phase (phaseijk = 0) or the intervention phase (phaseijk = 1). The coefficient for the time variable 

represents the slope during the baseline phase, timeijk ,and the coefficient for the interaction term, 

phaseijk*time�ijk, reflects the difference between the baseline and intervention phases’ slopes. The 

time variable can be centered in a variety of ways which may be helpful for interpreting the 

model parameters (Baek et al., 2013; Van den Noortgate, & Ferron, 2013).  

Specifically, for this study, the time variable is uncentered for the baseline phase’s slope 

such that for the first measurement occasion in the baseline phase, timeijk = 0.  However, the time′ 

variable in the interaction term, phaseijk*time�ijk is coded such that time�ijk = 0 for the first 

observation in the intervention phase. Therefore, the expected score during the baseline phase if 

extended one observation into treatment is equal to β0jk ; and the expected score of the treatment 

Level 3 Equations: 

θ00k = Ƴ000 + v00k         (18) 

θ10k = Ƴ100 + v10k          (19) 

θ20k = Ƴ200 + v20k         (20) 

θ30k = Ƴ300 + v30k          (21) 

 

�����������������
� ~
�0, Σ�� 
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phase at this same point in time is β1jk higher. As a result, β1jk refers to the immediate level 

change associated with an intervention (Huitema & McKean, 2000). β2jk represents the linear 

trend during the baseline phase, and the linear trend for the treatment phase was β3jk higher.  In 

other words, β3jk indicates the effect of the intervention on the trend that is the difference between 

the baseline phase and treatment phase slopes. Both β1jk  and β3jk are needed to fully describe the 

treatment effect.  At the second level, Equations 14-17 describe the new regression equations for 

the variation over subjects.  Equation 14 describes that the baseline performance for subject j 

from study k equals an overall baseline for study k plus some random deviation.  Similarly, 

Equations 15-17 indicate the variation of the treatment effect, linear trend in baseline, and the 

effect of the intervention on linear trend, respectively, over subjects from the same study. The 

next set of equations can be thought of similarly as the second level equations.   

 At the third level, the variation across subjects is modeled using Equations 18-21.  

Equation 18 represents the baseline mean for study k as the overall baseline across all of the 

studies plus some random deviation.  The same is modeled by Equations 19-21 for the variation 

of the treatment effect, linear trend in baseline, and the effect of the intervention on linear trend, 

respectively, across studies.  It should be noted that errors on levels 2 and 3 are typically 

assumed to be normally distributed and have a mean of 0 and a variance of 1.0. There was no 

covariance in the errors between levels and between errors at level-two and level-three. The 

within-person error is modeled by eijk (σ
2
e represent the variance of  eijk).  Equation 22 simply 

represents the combined model once all coefficients have been algebraically substituted. 

There are lingering concerns on the use of multi-level modeling, which is based on large 

sample theory, and its appropriateness to single case data.  One may expect that interval 

estimates of the average treatment effects would be unbiased under smaller sample sizes; 
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however, the same is not expected of the variance components (Raudenbush & Bryk, 2002).  

Owens (2011) conducted a Monte Carlo study to examine the appropriateness of the three-level 

model to meta-analyze raw data from single case studies.  The author found that the fixed effects 

estimated in a three-level model tended to be reliable and reasonably unbiased with small sample 

size and when using the Kenward-Roger estimation for degrees of freedom.  In short, the author 

found that the 95% confidence intervals width for the fixed effects approached .95 as level-three 

sample size increased.   This indicated that, whenever possible, meta-analysts should increase the 

number of primary studies included in their meta-analysis.  The simulation study also found that 

variance components tended to be less stable and more biased.  Specifically, Owens (2011) 

found the level-three variance components tended to be underestimated, while the level-two 

variance components tended to be overestimated.   Furthermore, as the variance in error terms 

shifted from most of the variance being in level-two to most of the variance being in level-three, 

the variance components for level-three tended to be underestimated and more biased. 

Conversely, as the variance in error terms shifted from most of the variance being at level-one to 

most of the variance at level-two, the variance components for level-two tended to be 

overestimated and more biased. Owens (2011) also found that the within person residual 

variance became more biased when using the three-level model as autocorrelation increased. The 

author proposed that this finding was not a surprise, given the stronger the relationship between 

errors within the person, the greater the difficulty in obtaining unbiased estimates for the residual 

variance.  

Ugille et al. (2012) conducted an extensive simulation study which investigated the 

performance of the multi-level approach for standardized (the unstandardized regression 

coefficients divided by the residual within-phase standard deviation) and unstandardized effect 
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sizes for single case studies. The authors simulated various conditions for the three-level model. 

They found that the multi-level approach worked well when unstandardized effect sizes were 

used. The approach was also optimal for standardized effect sizes for certain conditions: when 

there were more than thirty studies, when there were many level-one units, i.e. observations for 

each participant and when the studies are rather homogeneous, and when there was a small 

amount of between-study variance. 

Furthermore, applied work has been done examining the three-level model to meta-

analyze single case data. Petit-Bois, Baek, and Ferron (2012) investigated the model by 

analyzing the degree to which parameter estimates are sensitive to various methodological 

decisions, specifically regarding the specification of the growth trajectories using raw data 

collected from primary studies. Three distinct models involving different specifications of 

growth trajectories (no growth within a phase, constant linear growth, or nonlinear growth) was 

analyzed to understand the impact of this methodological decision on the parameter estimates. 

The study found that the model did support the visual analysis graphs in selecting the best model 

(the model that specified linear growth in terms of mathematics achievement over time). The 

authors suggested future work could be done to analyze the appropriateness of the fit indices 

given the small samples associated with single case research (Petit-Bois, Baek, and Ferron, 

2012). In another study conducted by Baek, Petit-Bois, and Ferron (2012), the three-level model 

was evaluated looking at the consequences of error structure specification on the results of a 

meta-analysis of single-case data involving reading fluency. More specifically, the authors 

analyzed four different models: the first model assumed no autocorrelation; the second model the 

autocorrelation is assumed to be constant both within and across studies; the third model the 

autocorrelation is assumed to be the same across participants within a study, but allowed to vary 
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across studies; and the last model allowed for varying autocorrelation across participants which 

leads autocorrelation to vary both within and across studies. The results indicated that the last 

two models did not converge; therefore, the remaining results are based on just the first two 

models. The fixed effects for the two models did not statistically differ. However, the fit indices 

supported the more complex level-one error structure (Baek, Petit-Bois, & Ferron, 2012). These 

applied works did use the fit indices as one way to identify the best model to approximate the 

data, however, the appropriateness of the use of fit indices have not been empirically studied in 

terms of single case research.  

Based on the research done thus far investigating Van den Noortgate’s 2008 three-level 

meta-analytic model, this study sought find the appropriateness of the use of fit indices to select 

the correct level-one error structure when synthesizing raw data across single-case studies. 

Furthermore, this study looked at the consequences of misspecifying the level-one error structure 

when using the three-level model to meta-analyze single case data. This work has not yet been 

done in single-case research, or using small sample sizes, therefore literature from the broader 

repeated measures or longitudinal designs was used to further inform the conditions for this 

study. 

Level-one Error Specification 

There are several ways that autocorrelation can be modeled, however, this study focused 

on a few which are discussed in the following section.  

Error Structure Options  

The simplest approach to modeling the level-one error structure is to assume the errors 

are independent, Σ = σ2 I  (Raudenbush & Bryk, 2002).  Another simple alternative would be to 

specify an unstructured covariance matrix. The great appeal for an unstructured error covariance 
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is that it places no restrictions on the structure of Σ. An unstructured covariance structure is 

commonly used in longitudinal data analysis, where there are generally a large number of 

participants and a substantial number of observations per participant. In most analyses, a more 

parsimonious structure is desirable. For example, in an exploratory analysis, it is sensible to 

begin with the unstructured error covariance model because it has the smallest deviance. This is 

due to the large number of parameters that are required to be estimated. The large value for the 

AIC and BIC over the model that assumed independent errors demonstrates the “wasting” of 

considerable degrees of freedom in choosing an unstructured form of Σ (Singer & Willet, 2003). 

However, convergence issues may arise with the use of the unstructured matrix in single case 

research where there are typically a small number of participants with a large number of 

observations for each participant. 

There are several other types of error matrices used in the repeated measures literature. 

One type of level-one error structure would be to use a first order autoregressive model, AR (1).  

Conceptually, the lag 1 autocorrelation represents the degree to which the current observation, at 

time t, can be predicted by the observation before, at time t-1. This can be calculated by taking 

the correlation between the second and first observation and so on, throughout the series. By 

doing this a researcher can determine the relatedness of the current observation with the past 

observations.  Many researchers are drawn to the first-order autoregressive model because its 

“banded diagonal” shape seems appropriate or realistic for growth processes. When errors are 

characterized by AR(1), the elements in the main diagonal of Σ have equal variances 

(homoscedastic, with variance σ2). Additionally, the pairs of errors have identical covariances in 

bands parallel to the leading diagonal. The covariances are the product of the σ
2 and an 

autocorrelation coefficient, ρ, whose value is always less than or equal to 1. Due to the fact that 
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the errors are always fractional, then the error variances decline as you move away from the 

leading diagonal (Singer & Willet, 2003).  

There are also more complicated models, such as the first order autoregressive moving 

average model, ARMA (1,1).  This alternative has some characteristics of the autoregressive 

structure, in that it has bands of identical covariances aligned parallel to the main diagonal. The 

ARMA (1,1) allows more flexibility than the AR(1) structure (Singer & Willet, 2003,). In 

summary, the list of parameters for each model can be described as ID contains a single 

parameter (σ2) on the main diagonal of an identity matrix, whereas AR(1) contains two 

parameters (σ2 and the autocorrelation coefficient, rho, ρ), and ARMA (1,1) contains not only the 

same two parameters as in AR(1), σ
2 and ρ, it also has a moving average coefficient, gamma (γ). 

These structures are considered nested because one structure can easily be another structure by 

constraining one or more parameters. More specifically, AR(1) can be reduced to ID if ρ is 

constrained to be equal to 0. Moreover, ARMA (1,1) can be constrained to ID if both γ and ρ are 

set to equal 0 (Kwok, West, & Green, 2007). This is illustrated by the three level-one error 

matrices in Figure 3 below. This example is just for simple illustration in Figure 3 below of the 

conceptual relationship between these nested covariance structures.  

 

Σ = σ2 I  Σ = AR(1) Σ = ARMA(1) 

σ
2 0 0 0 

0 σ
2 0 0 

0 0 σ
2 0 

0 0 0 σ
2 

 

σ
2 

1  Ρ  ρ2  ρ3 
 Ρ 1  ρ  ρ2 
 ρ2  Ρ 1 ρ 
 ρ3  ρ2  ρ 1 

 

 1 γ  γρ  γρ2 
σ
2 γ 1 γ  Γρ 
  γρ γ 1   
  γρ2  γρ γ 1 

 

Figure 3. Three level-one error structures. This figure illustrates the 3 different error 
specifications for the level-one error structure. Furthermore, it illustrates the correlation across 
four time points. 
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Another way to illustrate these structures is by looking at the underlying models which 

are often presented in the time series literature. Tabachnick & Fidell (2008) describes 

autoregressive components as the memory of the process preceding observations. The value of 

phi (ρ) is 0 when there is no relationship between adjacent observations. Furthermore, they 

described the relationship using the following mathematical model in Equation 23: 

 

The moving average components represent the memory of the process for preceding 

random errors (Tabachnick & Fidell, 2008). The authors went on to describe the mixed model 

which contained both an autoregressive and moving average components so both types are 

required for this model. This mixed model is represented below in Equation 24 where ρ is the 

autoregressive component and � illustrates the moving average component: 

Obtaining the correct within-subject covariance structure has been a huge discussion and 

studied extensively in growth curve modeling (GC modeling) or longitudinal data analysis 

(Kesselman, Littell, & Sivo, 2000). Growth curve modeling or longitudinal data’s defining 

characteristic is that individuals are measured repeatedly over time enabling direct study of 

change (Diggle, Heagerty, Liang, & Zeger, 2002). Should one use a correlated error structure? 

Many researchers who use uncorrelated error structures commonly assume that the Σ = σ2 I   

(Bryk & Raudenbush, 2002). This commonly used approach should lead the researcher to 

question whether Σ has been misspecified (Kesselman, Algina, Kowalchuk, & Wolfinger, 1999; 

Kwok, West, Green, 2007).  Given this question and the research which has demonstrated that 

Yt = ρY t-1 – �et-1 + et        (24) 

 

Yt = ρY t-1 + et         (23) 
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autocorrelation more than likely exists within a repeated measures framework, choosing to 

model the autocorrelation appears most appropriate.  After deciding to model autocorrelation, a 

question that commonly arises with both areas (whether it is longitudinal or single case designs) 

is whether or not the model has the correct level-one error structure specification?  

Selecting the Correct Level-One Error Structure 

There are two commonly used approaches to select an appropriate level-one covariance 

structure. One method is to use fit indices to appropriately select the best model to approximate 

the data. The other option is to specify the level-one error structure a priori with either an 

uncorrelated or correlated error structure. Both of these methods have been studied significantly 

in terms of longitudinal data or growth curve modeling.  

Fit criteria. The first method is to allow the fit information to select the appropriate error 

structure. Several researchers have utilized this method of selecting a structure for Σ by 

examining multiple structures and using log likelihood tests or information criteria to select an 

error structure (Ferron, Dailey, & Yi, 2002; Gomez, 2005; Kesselman et al., 1999). Commonly 

used fit indices include deviance statistic, AIC, or BIC (Ferron, Dailey, & Yi, 2002; Singer & 

Willet, 2003).  

There are several advantages to using index comparison approaches, such as the Akaike 

Information Criterion (AIC) and the Bayesian Information Criterion (BIC).  One advantage is 

that it allows the comparison of non-nested models. Another benefit to using to index 

comparison is that the indices quantify the degree to which the model represents an improvement 

over the competing models (McCoach & Black, 2008).  Additionally, Liu, Rovine, and Molenar 

(2012) also suggested that the most general approach to compare models regardless of the type 

of misspecification is to look at the AIC and BIC. In their study, the authors hypothesized that 
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there could be a difference between the structural equation modeling (SEM) approach and the 

hierarchical linear modeling (HLM) approach. They theorized that the difference could stem 

from the method by which each approach estimated the parameters. For example, the SEM 

approach can separately model the means and the covariance parts and evaluate the fit of the 

covariance model alone; meanwhile, the HLM approach  simultaneously estimates the means 

model and the covariance model (Liu, Rovine, & Molenar, 2012). However, they found that the 

fit indices performed well with both small and large sample sizes. 

The formulas for the two indices appear similar, but the indices are philosophically 

different. The Bayesian approach, or BIC, treats every model as the possible “true” model, and 

estimates the likelihood of the model being the correct model. For the AIC, this index uses the 

prediction of future data as the key criterion (McCoach & Black, 2008). Although some 

researchers may prefer one index over the other, McCoach & Black (2008) suggest the use of 

both the AIC and BIC in combination with chi-square difference tests for nested models. The 

formulas for the three fit indices are shown below: 

 

For all of the indices, D represents the deviance (-2LL). However, for the AIC, p = the 

number of parameters estimated in the model.  Since the AIC’s penalty term is 2p the deviance 

must decrease by more than 2 per additional parameter, in order to favor the more complex 

model. For the BIC, n represents the sample size and p is the number of parameters estimated in 

AIC = D + 2p         (25) 

 

AICc = D + 2p * (n / ( n - p - 1))      (26) 

 

BIC = D + ln (n)*p        (27) 
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the model. In multi-level models, it is not clear which sample size should be used. SAS PROC 

MIXED uses the number of independent sampling units as the sample size. At small sample 

sizes, the BIC will favor more parsimonious models than the AIC and the chi-square difference 

tests.  

Furthermore, Raftery (1995) has suggested guidelines for interpreting changes in BIC. 

After subtracting the BICs for the two competing models, a difference of 0-2 suggests weak 

evidence favoring model 2 over model 1; differences of 2-6 provides positive evidence for model 

2 over model 1; BIC differences of 6-10 provided strong evidence for the model 2 over model 1; 

and lastly, differences greater than 10 provided very strong evidence for model 2 over model 1. 

For the AICc, a finite-sample corrected version of the AIC, where n represents sample size. 

Therefore, AICc gives a greater penalty than the AIC for extra parameters. 

 Ferron, Dailey, and Yi (2002) wanted to analyze the sensitivity of model selection 

criteria to the misspecification of the level-one error structure. The effects of the misspecification 

were then examined for estimates of variance parameters, estimates of the fixed effects, and the 

tests of fixed effects. They found that the fixed effects were not biased. This finding aligned with 

past simulation work. They also found that the AIC correctly identified only 47% of the time. 

Their results varied greatly as a function of sample size (larger sample sizes gave more precise 

estimates). There was also a notable interaction between the series length and sample size 

(sample size matter more when there were shorter series length). The implication of this study 

was that the fit indices do not properly identify the correct error structure. This study also 

demonstrated that if the error structure was not modeled correctly, then this would lead to even 

more bias in the variance components.   
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Another study that investigated fit indices was Kesselman, Algina, Kowalchuk, & 

Wolfinger (1999). This study sought to compare two different types of fit indices for selecting 

covariance structures when looking at repeated measures designs. They found that neither fit 

index, the Akaike (1974) or the Schwartz (1978), uniformly chose the correct covariance 

structure. This study indicated that although there is a need to model the correct covariance 

structure, due to powerful tests of the fixed effect parameters, using fit indices is not a reliable 

method for choosing the correct error structure. These findings are very similar to Ferron, 

Dailey, and Yi (2002); both studies suggested there is a lack of reliability in using fit indices to 

correctly identify the correct error structure in repeated measures designs. 

Selecting error structure a priori. The second method to select a covariance structure 

for Σ a priori has also been studied substantially in the longitudinal area. Sivo, Fan, and Witta 

(2005) investigated the degree to which autocorrelation in its various forms biases the estimates 

obtained in latent GC modeling. This study had two intended purposes:  1) to introduce how 

growth curve models and MA and ARMA models may be integrated; and  2) to investigate the 

degree to which autocorrelation in its various forms (AR, MA, and ARMA) biases the estimates 

in GC modeling.  They found that unmodeled autocorrelation could lead to biased results. Their 

suggestion was to always model autocorrelation as an option to improve model fit when applying 

GC modeling with at least 4 time points in longitudinal research. The authors further suggested 

more work was necessary that focused on fewer occasions to determine whether the conclusions 

of the study hold. Another study, Kwok, West, and Green (2007) looked at the effects of 

different forms of misspecification (underspecification, general misspecification, and 

overspecification) of the within-subject residuals for longitudinal models. They found that 

underspecification and general misspecification of the level-one error matrices were more likely 
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to result in overestimation of the standard errors of the growth parameters, which resulted in 

lower statistical power as compared to the correct specification. As a result, the authors 

concluded that overestimation of the matrices were more likely to result in slightly smaller 

standard errors of the growth parameters which led to a possible gain in statistical power. These 

findings led the authors to suggest that it is best to adopt a slightly overspecified, such as AR(1), 

error structure if researchers are not sure about the correct error structure for their data. 

In a later study, authors examined the performance of a two-level model when 

autocorrelation moving average is present, but the data were misspecified and modeled as either 

σ
2 I, first-order autocorrelation, or unstructured covariance matrix (Murphy & Pituch, 2009).  

Some key findings of this study were that the fixed effects were unbiased as was found in 

previous research (Ferron, Dailey, & Yi, 2002; Raudenbush & Bryk, 2002). The authors also 

found that overspecifying the level-one error structure with type = UN was a viable option with 

sufficient sample size. Finally, the authors concluded that the variance components were biased 

regardless of correct specification. This research again suggested that when serial dependence or 

autocorrelation is present, the fit criteria will not always correctly identify the covariance 

structure. Due to this lack of reliability of the fit indices, the author chose to always overspecify 

the error structure using type = UN. However, Singer and Willet (2003) explicated that 

overspecifying the covariance matrix using the unstructured matrix was not typically ideal. The 

authors suggested the desire for the more parsimonious model. The authors explicated that their 

study was an example of fitting various types of matrices, including compound symmetry, first 

order autoregressive, and a toeplitz, and then using the fit indices to determine the correct error 

structure. They found that the toeplitz error structure most appropriately fit their data based on 

the results of the fit indices. 
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Sensitivity analysis. Additionally, researchers can perform some sort of sensitivity 

analysis, where they can fit several level-one covariance structures and see how these different 

models affect the precision of the parameter estimates. Based on the consequences to the 

estimates, then a research can choose the most accurate level-one error structure. Faith, Allison, 

and Gorman (1996) recommended that meta-analysts may try to look at the effect sizes of one 

method, then repeating analyses using another error structure specification as a form of 

sensitivity analysis. 

A general conclusion for the literature from the broader repeated measures area that can 

be drawn was that researchers do not typically know what type of error structure would best 

approximate their data. Therefore, researchers typically have three options: 1) to use fit 

information criteria to select the correct level-one error structure or 2) to choose their error 

structure a priori. 3) To perform some form of sensitivity analysis. 

Chapter Summary  

Single-case designs are used extensively to determine treatment effectiveness or how a 

treatment may affect a single subject or multiple participants within a study. There are several 

commonly used designs in single case research. The most popular design is the multiple-baseline 

(Shadish & Sullivan, 2008). This design is powerful due to its ability to reduce internal validity 

threats, or the possibility that anything other than the treatment or intervention could be causing 

the participants to change the observed behavior or outcome at the time the intervention is 

introduced (Barlow, Nock, & Hersen, 2009; Kazdin, 2011).  

One important feature of single-case interventions is the repeated measurement of a case 

or participant across multiple time points, to assess the treatment’s effect on one specific case or 

participant (Kazdin, 2011). These repeated observations within one participant have led to a 
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great debate about how correlated one observation is to the next observation and so on and so 

forth. Autocorrelation can affect how the researcher interprets their intervention effect, no matter 

the type of analysis that is used (Barlow, Nock, & Hersen, 2009; Kazdin, 2011).  Visual analysis 

is the most commonly used technique applied to single case designs; however, this analysis has 

limitations in the presence of correlated level-one error structures (Brossart et al., 2006; Huitema, 

1986; Kazdin, 2011; Maytas & Greenwood,1990). Several researchers have suggested the need 

for visual analysis to be supplemented by some statistical technique (Barlow, Nock, & Hersen, 

2009; Kazdin, 2011). Nevertheless, some of the commonly used statistical techniques also show 

concerns in the presence of correlated errors.  

The multi-level model allows flexibility in modeling autocorrelation; moreover, the 

model allows for different level-one error specifications. Single-case researchers are occasionally 

interested in more than synthesizing data across participants within a study; they are also 

interested in synthesizing across studies. There are several meta-analyses that have been done 

involving single-case research designs; nonetheless, there still has not been a consensus on the 

best way to synthesize these data. Van den Noorgate (2008) proposed a three-level model that 

can be used to synthesize raw data across single-case studies. There are several ways to specify 

the three-level model, and one of those decisions is whether or not to model autocorrelation. If 

choosing to model autocorrelation, how do we know that the level-one error structure has been 

correctly specified in the model? This work has not yet been studied in the single-case literature, 

however, literature from the broader repeated measures or longitudinal area was utilized to 

inform this study. 

Obtaining the correct within-subject covariance structure has been a huge discussion and 

studied extensively in growth curve modeling (GC modeling) or longitudinal data analysis 
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(Kesselman, Littell, & Sivo, 2000). There are two commonly used approaches to the selection of 

an appropriate level-one covariance structure when using multi-level models. One method is to 

use fit indices to appropriately select the best model to approximate the data (Ferron, Dailey & 

Yi, 2002; Gomez, 2005; Kesselman et al., 1999). The other option is to specify the level-one 

error structure a priori with either an uncorrelated or correlated error structure (Kwok, West, & 

Green, 2007; Murphy & Pituch, 2009).  

The study examined at the appropriateness of the use of fit indices to correctly identify 

the level-one error structure. More specifically, the study analyzed the percentage of times that 

each fit index appropriately guides the researcher to the correct level-one error structure. 

Secondly, the study looked at the consequences of misspecifying the level-one error structure 

when synthesizing data across single-case studies when utilizing the three-level model. 
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CHAPTER THREE:  METHOD 
 
 

This chapter outlines the proposed methods for this study, including the purpose, research 

questions, sample, design, and analysis. 

Purpose 

There have been a number of studies that have analyzed fit indices and properly 

identifying the correct level-one covariance structures in terms of the general longitudinal data, 

or growth curve models. A thorough literature review has uncovered no research to date looking 

at fit indices in terms of single-case research using multi-level models. Moreover, no research 

was uncovered regarding the consequences of different forms of specification of the level-one 

error structure when using a three-level meta-analytic single-case model.  

The purpose of the study was two-fold: 1) to determine the extent to which the various fit 

indices (post hoc selection) can correctly identify the level-one covariance structure, and 2) to 

investigate the effect of various forms of misspecification of the level-one error structure when 

using a three-level meta-analytic single-case model. 

Research Questions 
1. To what extent do fit indices (AIC, adjusted AIC, BIC, log likelihood ratio test) 

correctly identify level-one covariance structure when using a three-level meta-analytic 

single-case model? 

2.  To what extent are the fixed effect parameter estimates from a three-level meta-analytic 

single-case model biased as a function of design factors (number of primary studies per 

meta-analysis, number of participants per primary study, series length per primary 
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study), data factors ( variances of the error terms, covariance structures, level of the 

treatment effect), and analysis factors (form of specification)? 

3. To what extent are confidence interval width and coverage for the fixed effects from 

a three-level meta-analytic single-case model affected as a function of design factors 

(number of primary studies per meta-analysis, number of participants per primary study, 

series length per primary study), data factors (variances of the error terms, covariance 

structures, level of the treatment effect), and analysis factors (form of specification)? 

4. To what extent are the Type I error and power for the fixed effects from a three-level 

meta-analytic single-case model affected as a function of design factors (number of 

primary studies per meta-analysis, number of participants per primary study, series 

length per primary study), data factors (variances of the error terms, covariance 

structures, level of the treatment effect), and analysis factors (form of specification)? 

5. To what extent are the variance component parameter estimates from a three-level 

meta-analytic single-case model biased as a function of design factors (number of 

primary studies per meta-analysis, number of participants per primary study, series 

length per primary study), data factors (variances of the error terms, and covariance 

structures, level of the treatment effect), and analysis factors (form of specification)? 

6. To what extent are confidence interval width and coverage for the variance 

components from a three-level meta-analytic single-case model affected as a function of 

design factors (number of primary studies per meta-analysis, number of participants per 

primary study, series length per primary study), data factors (variances of the error 

terms, covariance structures, level of the treatment effect), and analysis factors (form of 

specification). 
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Design 

The study used a 2x2x2x2x2x5x7 factorial design. Seven experimental variables were 

manipulated in this study: 1) the number of primary studies per meta-analysis (10 and 30);  2) the 

number of participants per primary study (4 and  8);  3) the series length or number of 

observations per participant (10 and 20);  4) variances of the error terms (most of the variance at 

level-one: [σ2=1; �� = 0.5, 0.05, 0.5, 0.05;  �� = 0.5, 0.05, 0.5, 0.05] and most of the variance at 

higher levels: [σ2=1; �� =  2, 0.2, 2, 0.2;  �� =  2, 0.2, 2, 0.2]);   5) the level for the fixed effects ( 

0 or [2 for the shift in level and .2 for the shift in slope]);  6) the level of autocorrelation and the 

moving average parameter, respectively: [(0,0), ( .2, 0), (.4,0), (.2, .2), (.4, .4)]; and 7) the form 

of model specification [i.e. ID, AR(1), ARMA (1,1)], and error structure selected by AIC, AICC, 

BIC, and the LRT. The next section will provide a thorough description of the conditions that 

were simulated in this study. 

Conditions Simulated  

Number of primary studies per meta-analysis.  These values were chosen based on 

several initial studies that have been conducted in this area. First, a review that was conducted by 

Farmer, Owens, Ferron, and Allsopp (2010) on 39 single-case meta-analyses in social science 

between the years of 1999 and 2009 found that the number of primary studies included in the 

meta-analyses ranged from 3 to 117. Additionally, Farmer et al. found that 60% of the meta-

analyses included less than 30 primary studies. Owens and Ferron (2011) conducted an initial 

study that looked at the three-level analytic model synthesizing raw data from single-case studies 

and used three levels for the number of primary studies per meta-analysis: 10, 30, and 80. The 

authors found that the confidence interval around the fixed effects approached the nominal level 
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of .95 as the number of studies included in the meta-analysis increased. In another study, the 

number of primary studies used was 10 and 30 (Ugille et al., 2012). The authors found similar 

results that the confidence interval became more precise as the level-three sample size increased. 

Initial applied work was also done to further inform the conditions used in this study. 

Petit-Bois (2012) conducted a meta-analysis of mathematics interventions and found only 10 

studies that used comparable dependent variables, mathematical problem solving, and met the 

inclusion criteria of the study. Another applied meta-analysis using the raw data from single-case 

studies included the dependent variable, reading fluency, and in this study, Baek, Petit-Bois, and 

Ferron (2012) found 20 studies that appropriately met the inclusion criteria. The conditions that 

were used in this study were based on all of the aforementioned work that has been done thus far 

in this area. The number of primary studies in each meta-analysis had two levels: 10 and 30. 

Number of participants per primary study. The survey of single-case meta-analyses 

found that the majority of single-case studies involved less than or equal to 7 participants 

(Farmer, Owens, Ferron, & Allsopp, 2010).  Kazdin (2011) recommends that in order to see a 

treatment effect “clearly” that a minimum of three baselines is necessary. However, the author 

goes on to explain that the more baselines there are, the “clearer” the intervention effect is. 

Specifically, intervention effects are more evident across several (8 or 9) persons or situations 

(Kazdin, 2011). An overview of the simulation work that has been conducted revealed that in 

two other studies, Owens and Ferron (2011) used two levels for the modal number of 

participants: 4 or 8; and the other study used 4 or 7 seven participants for their Monte Carlo 

study (Ugille et al., 2012). 

A further examination into the applied work that has been conducted in this area exposed 

that the average number of participants for each of the primary studies was 3.25 (Petit-Bois, 
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2012) and 4.60 (Baek, Petit-Bois, & Ferron , 2012). In a survey of the characteristics of single 

case designs, Shadish and Sullivan (2011) found that the sample sizes ranged from 1 to 13, with 

an average of 3.64.  Based on these findings and the previous work that has been done in terms 

of Monte Carlo studies, there were two levels applied for number of participants: 4 and 8. 

Series length per primary study. Shadish and Sullivan (2011) found that of the 809 

studies that were reviewed over 90% had 49 or fewer observations. Moreover, previous 

simulation work using the two-level model for analyzing single case data used series length of 

10, 20, and 30 (Ferron et al., 2009; Ferron, Farmer , & Owens, 2010). In the Monte Carlo 

studies, the series length had three levels for one of the studies: 10, 20, and 30 (Owens & Ferron, 

2011); another study that was recently conducted included the series length with two levels: 10 

and 30 (Ugille Moeyaert, Beretvas, Ferron, & Van den Noortgate,  2012). The authors in the 

latter study, in 2012, Ugille et al. found that the most bias conditions in their data set were the 

conditions that contained the shortest series length, level-one sample size of 10.  In the area of 

applied work, Petit-Bois (2012) included studies with an average series length of 12.55. These 

prior studies were used to determine the series length for this study. The series length for this 

study included series lengths of 10 and 20. 

Baseline stability (lacking new trends or high variability) is most important when 

introducing the second baseline and any other consecutive baselines to intervention. The focus 

should not be on the number of days, but rather on the clarity of the pattern in determining the 

decision (Kazdin, 2011). The time at which the intervention was introduced staggers across 

participants within studies, creating the multiple baselines for the study.  This time will depend 

on the combination of the number of participants and data points for each. These combinations 

are reflected in the table below. For example, when there are four participants the number of 
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measurement occasions for each participant equals ten. For the first participant, the treatment 

began on the fourth observation; for the second participant on the fifth observation; for the third 

participant on the seventh observation; and for the last participant, the treatment began on the 

eighth observation. The treatment will last until the tenth measurement occasion for all four 

participants. For the studies that include eight participants, the eight participants were paired to 

form 4 groups. These 4 groups of dyads will then be on the same intervention schedule as the 

studies that only have 4 total participants. For example, the first dyad, began treatment on the 

fourth observation (4); for the second dyad on the fifth measurement occasion (5), the third dyad 

on the seventh observation (7), and for the last pair, the treatment began on the eighth 

observation (8). This is represented as 4-5-7-8 in the table below. The treatment will last until the 

tenth measurement occasion for all four pairs of dyads. 

Table 2 below illustrates the multiple baselines for all four combinations of the number of 

participants and total number of observations or measurement occasions.  

Table 2 
The Combination of Treatment Introductions for the Various Numbers of Participants and 
Observations 
 

Total Number 
of 

Observations 

Number of Participants for each study 

4 8 (4 pairs) 

10 4-5-7-8 4-5-7-8 

20 6-9-12-15 6-9-12-15 
 
 
 

Variances of the error terms. The variances could be separated into two distinct groups: 

either having most of the variance at level-one, variance within participants (Ferron et al., 2009; 

Van den Noortgate, 2008) or having most of the variance at the higher levels, the variance 
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among the participants and the variance among studies included in the meta-analysis (Van den 

Noortgate, 2008).  Based on these findings, elements of the within-study (across participants) 

variance matrix, ��,  were manipulated to represent both scenarios. For simplicity, the 

covariances or off-diagonals were set to 0 (there was no covariances) for the within-study (across 

participants) variance matrix. Therefore, ��, is a diagonal matrix,  �� �
� !"� #�$� , #�%� , #�&� , #�'� �. If the within-person (level-one) variance is set to 1.0, setting the four 

diagonal elements of  �� to values of 2, 0.2, 2, 0.2 (for the variances in the baseline’s intercept, 

baseline’s slope, shift in level,  and difference in baseline and treatment’s slope, respectively) 

represents a relatively large amount of within-study (level-two) variability. Conversely, setting 

the four diagonal elements of  �� to values of 0.5, 0.05, 0.5, 0.05 (for the variances in the 

baseline’s intercept, baseline’s slope, shift in level,  and difference in baseline and treatment’s 

slope residuals, respectively) represents a relatively large amount of within-person (level-one) 

variability.  

The same idea was applied to the level-three variance matrix, the variance across, or 

between-studies. The elements of this variance matrix were  �� � diag� #�$� , #�%� , #�&� , #�'� � equal 

to 2, 0.2, 2, 0.2 to represent a relatively large amount of between-study variability (level-three) 

and 0.5, 0.05, 0.5, 0.05 to demonstrate a relatively small amount of between-study variability. 

Owens (2011) found that the level-two variance components tended to overcover when most of 

the variance was at level-one, however, the level-three variance components tended to 

undercover when most of the variance was at level-one. The study applied similar conditions for 

the error variances. Therefore, the study had two conditions, most of the variance at level-one: 

[σ2=1; �� = 0.5, 0.05, 0.5, 0.05;  �� = 0.5, 0.05, 0.5, 0.05] and most of the variance at the higher 

levels: [σ2=1; �� =  2, 0.2, 2, 0.2;  �� =  2, 0.2, 2, 0.2]. Note that the variance of the error terms 
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for the residual variance was held constant at 1.0 across conditions. Thus, the conditions that 

have most of the variance shifted to the upper levels have more total variance. 

Levels for the fixed effects.  The level for the treatment effect was typically fixed in 

prior research, in which the aim in those studies was not to look at the power estimates for the 

study. Those prior works (Ferron et al.,2009;  Owens, 2011) were focused on looking at the bias 

in the point estimates and interval coverage for the fixed effects and the variance components 

(Baek & Ferron, 2013; Owens, 2011). However, for this study, the power estimates and the type 

I errors were outcomes of interest, therefore two levels for the fixed effects were selected. The 

levels for the fixed effects were either no effect, i.e. 0, for both the shift in level and the shift in 

slope. Alternatively, the levels for the fixed effects were 2 and 0.2 for the shift in level and shift 

in slopes, respectively. 

Level-one error structures.  The data were generated using five different level-one error 

structures. First, the simplest error structure was used; this structure will assume no 

autocorrelation, Σ = σ2 I  (Raudenbush & Bryk, 2002).  The second error structure that was 

generated assumed a first-order autoregressive structure, AR(1). In past simulation work that 

examined autocorrelation in terms of the multi-level model, specifically the two-level model in 

this case, the levels of autocorrelation were 0, 0.1, 0.2, 0.3, 0.4 (Ferron et al, 2009; Ferron, 

Farmer, &  Owens, 2010). These values covered the range that is typically found in behavioral or 

educational research (Huitema, 1985; Matyas & Greenwood, 1996). Likewise, there have been 

additional Monte Carlo studies that have investigated the appropriateness of the three-level 

model with synthesizing raw data across single-case studies, the levels of autocorrelation used 

were 0, 0.2, and 0.4 (Owens, 2011).  The author found that within-person residual variance 

became more biased as the level of autocorrelation increased. For this study, there was five 
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levels for the autocorrelation and moving average parameters, respectively: the ID model: [0, 0], 

autoregressive model: [.2, 0], autoregressive model: [.4, 0], moving average autoregressive 

model: [.2, .2], and moving average autoregressive model: [.4, .4]. These values are commonly 

used in educational research.  

Form of model specification. The study evaluated the consequences of multiple 

approaches to level-one error structure specification, including post hoc specification based on a 

range of fit indices and a priori specification of relatively simple to relatively complex 

covariance structures.  These methods were chosen to parallel the options used by analysts in 

practice and in past research in broader longitudinal research.  The use of fit indices or post hoc 

model selection has been extensively examined in the broader repeated measures literature 

(Ferron, Dailey, & Yi, 2002; Gomez, 2005; Kesselman, Algina, Kowalchuk, &Wolfinger, 1999). 

Commonly used fit indices include deviance statistics, AIC, or BIC (Ferron, Dailey, & Yi, 2002; 

Singer & Willet, 2003). In general, the studies found that neither of the fit indices uniformly 

selected the correct level-one error structure.  

The second method utilized in selecting the level-one covariance structure a priori. Sivo, 

Fan, and Witta (2005) wanted to investigate the degree to which autocorrelation in its various 

forms (AR, MA, ARMA) biases the estimates in GC modeling.  They found that unmodeled 

autocorrelation could lead to biased results. The authors further suggested that more work was 

necessary with small samples to determine if the conclusions of the study would still hold. 

Additionally, Kwok, West, and Green (2007) conducted a similar study which sought to 

investigate various forms of misspecification (underspecification, overspecification, and general 

misspecification) of the level-one error structure. In the study, the authors concluded that it is, at 
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times; best to adopt a slightly overspecified level-one error structure. The study investigated the 

appropriateness of these methods to small samples or single-case designs.  

Based on the conditions used in these prior works, this study examined both methods: fit 

indices (post hoc selection) and a priori selection of the level-one error structure. More 

specifically, there were seven levels of this model specification factor: (1) a priori selection of 

independent, ID; (2) a priori selection of first-order autoregressive, AR(1); (3) a priori selection 

of first-order autoregressive first-order moving average, ARMA(1,1); (4) post hoc selection of 

either ID, AR(1) or ARMA(1,1) based on the AIC; (5) post hoc selection of either ID, AR(1) or 

ARMA(1,1) based on the AICC; (6) post hoc selection of either ID, AR(1) or ARMA(1,1) based 

on the BIC; and (7) post hoc selection of either ID, AR(1) or ARMA(1,1) based on the likelihood 

ratio test.  The AIC selected model was the model that produced the lowest AIC value. The 

AICC selected model was the model that produced the lowest AICC value. Lastly, the BIC 

selected model was the model that produced the lowest BIC value. The lowest value was used as 

the model selected by each fit index, no fixed criteria, such as difference of at least 0.5 or 1, was 

used. To determine the model selected by the LRT, differences in fit at the .05 level were 

examined among the three models.  If no significant differences were found the ID specification 

was selected.  If the AR(1) produced significantly better fit than the ID, but not the ARMA(1,1),  

then AR(1) model was selected.  Finally, if the ARMA(1,1) had significantly better fit than the 

other two previously discussed models, then the ARMA(1,1) was selected.  Type I error was not 

controlled for the various tests, for example, for the ARMA model(1, 1) to be selected, two tests 

would have had to be rejected at the .05 level. Table 3 below shows a sample of  the possible 

scenarios for the log likelihood ratio test (LRT). This led to a total of seven levels for the 

analysis factor. 
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Table 3 
A Sample of the Tests that were used to Select the Correct Model for the LRT 

ID vs. AR ID vs. ARMA AR vs. ARMA Model Selected 
Reject Reject Reject ARMA 

Reject Reject FTR AR 

Reject FTR FTR AR 
FTR FTR FTR ID 

 

 

 The seven experimental factors that were previously described fall into three generic 

categories. The first three factors are design factors. Factors 4, 5, and 6 represent the data factors. 

Lastly, factor 7 is the analysis factor.   

 

Sample 

Crossing two levels for the error variances with the two levels of the fixed effects with 

five levels of covariance structures that were generated led to 20 conditions, which were then 

crossed with the 8 combinations of the number of studies included in the meta-analysis, the 

number of participants in each study, and the number of observations in the series length. For 

each of the design and data factors (160 conditions), 5000 simulated data sets were generated 

using SAS IML (SAS Institute, Inc., 2008).  The use of 5000 data sets led to a standard error of 

.0003 for the confidence interval estimate at the .95 confidence level, which was an appropriate 

level of precision for this study.  
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Data Generation 

The data were generated using Van den Noortgate’s three-level model for the meta-

analysis of single-case data. Equations 28-36 below represent the model formally, 

Level 1 Equation: 
Y ijk = β0jk + β1jk*phaseijk+ β2jk* timeijk + β3jk*phaseijk*time�ijk + eijk , ����~
�0, Σ�� (28) 

 

Level 2 Equations: 
β0jk = θ00k + u0jk          (29) 
β1jk = θ10k + u1jk          (30) 
β2jk = θ20k + u2jk          (31) 
β3jk = θ30k + u3jk           (32) 

 
 

 
Level 3 Equations: 
θ00k = Ƴ000 + v00k            (33) 
θ10k = Ƴ100 + v10k            (34) 
θ20k = Ƴ200 + v20k            (35) 
θ30k = Ƴ300 + v30k             (36) 

 
 

In Equation 28, the value of the dependent variable on measurement occasion i for 

subject j of study k (Yijk) is regressed on a dummy variable phase, that equals one if measurement 

occasion i occurs in the treatment phase, otherwise it is equal to 0 in the baseline phase. The 

score on the dependent variable on measurement occasion i for subject j of study k is Yijk.  The 

phase variable is a dummy-coded indicator reflecting whether the observation is in the baseline 

phase (phaseijk = 0) or the intervention phase (phaseijk = 1). The coefficient for the time variable 

represents the slope during the baseline phase, timeijk ,and the coefficient for the interaction term, 

phaseijk*time�ijk, reflects the difference between the baseline and intervention phases’ slopes. The 

�����������������
� ~
�0, Σ�� 

�����������������
� ~
�0, Σ�� 
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time variable can be centered in a variety of ways which may be helpful for interpreting the 

model parameters (Baek et al., 2013; Van den Noortgate, & Ferron, 2013).  

Specifically, for this study, the time variable is uncentered for the baseline phase’s slope 

such that for the first measurement occasion in the baseline phase, timeijk = 0.  However, the time′ 

variable in the interaction term, phaseijk*time�ijkis coded such that time�ijk = 0 for the first 

observation in the intervention phase. Therefore, the expected score during the baseline phase if 

extended one observation into treatment is equal to β0jk ; and the expected score of the treatment 

phase at this same point in time is β1jk higher. As a result, β1jk refers to the immediate level 

change associated with an intervention (Huitema & McKean, 2000). β2jk represents the linear 

trend during the baseline phase, and the linear trend for the treatment phase was β3jk higher.  In 

other words, β3jk indicates the effect of the intervention on the trend that is the difference between 

the baseline phase and treatment phase slopes. Both β1jk  and β3jk are needed to fully describe the 

treatment effect.  At the second level, Equations 29-32 describe the new regression equations for 

the variation over subjects.  Equation 29 describes that the baseline performance for subject j 

from study k equals an overall baseline for study k plus some random deviation.  Similarly, 

Equations 30-32 indicate the variation of the treatment effect, linear trend in baseline, and the 

effect of the intervention on linear trend, respectively, over subjects from the same study. The 

next set of equations can be thought of similarly as the second level equations.   

 At the third level, the variation across subjects is modeled using Equations 33-36.  

Equation 33 represents the baseline mean for study k as the overall baseline across all of the 

studies plus some random deviation.  The same is modeled by Equations 34-36 for the variation 

of the treatment effect, linear trend in baseline, and the effect of the intervention on linear trend, 

respectively, across studies.  It should be noted that errors on levels 2 and 3 are typically 
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assumed to be normally distributed and have a mean of 0 and a variance of 1.0, however for this 

study the variances were as previously discussed.  There was no covariance in the errors between 

levels and between errors at level-two and level-three.  

The within-person error is modeled by eijk (σ
2
e represent the variance of  eijk). Errors from 

the within-person, or level-one error structure, were generated using the ARMASIM function in 

SAS Version 9.3 (SAS Institute, 2008). There were five different level-one error specifications. 

The first represented an independent or ID level-one error structure with normal distribution, 

N(0, 1). The second generated the first order autoregressive level-one error structure, AR(1), 

autocorrelation coefficient of .2 or .4. Lastly, the first-order autoregressive first-order moving 

average, ARMA(1,1), level-one error structure was modeled, with both an autocorrelation 

parameter and moving average coefficient of .2 and .4, aligned with the values that were used for 

the autocorrelation parameter. The three equations (37-39) below represent the three different 

level-one error specifications, ID, AR(1), and ARMA (1,1), respectively. The data simulation 

was checked by examining the matrices produced at each stage. A small number of data sets 

were simulated to ensure that data specifications are accurate. The data set was analyzed and 

then reviewed to ensure that parameter estimates are close to expected estimates.  

 

eijk = et          (37) 
 
eijk = .3 y(t-1)  + et        (38) 
 
eijk = .3 y(t-1)  - . 3et-1 + et       (39) 
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Analysis of Each Simulated Data Set 

Model Specification  

Each simulated data set was analyzed to provide results for each of the seven levels of the 

analysis factor. Moreover, each simulated data set was analyzed once using an ID specification 

of the level-one error structure, once using an AR(1) specification, and once using an 

ARMA(1,1) specification.  In each case the three-level model was estimated using restricted 

maximum likelihood (REML) via PROC MIXED with the Kenward-Roger degrees of freedom 

method in SAS version 9.3 (SAS Institute Inc., 2008). The confidence interval for the variance 

components were constructed using the Satterthwaite approximation, which is the default in SAS 

9.3.  

Table 4 below represents the combinations for the covariance structure that was used in 

data generation versus the model that was used to analyze the data set.  

Table 4 
The Combination for the Type of Level-one Error Structure Generated and the Model 
Specification 
 

Model Specification 

Data Generated ID AR(1) ARMA(1, 1) 

ID Correct Over Over 

AR(1) Under Correct Over 

ARMA(1,1) Under Under Correct 
 

For example, the first row represents a data set that was generated assuming an 

uncorrelated level-one error structure, Σ = σ2 I. The data set was then analyzed using three 

distinct model specifications: the correct specification and two overspecifications-- a first-order 

autoregressive, AR(1) and a first-order autoregressive, moving average model, ARMA (1,1). For 
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further illustration, the next row represents that the data were generated using the first-order 

autoregressive model.  That data were then analyzed using the same three distinct models. 

However, underspecification was the uncorrelated error structure, correctly specified was 

represented by AR(1), and the first-order autoregressive moving average model demonstrated 

overspecification.  

The results were further examined to determine which fit index correctly specified the 

level-one error structure.  More specifically, variables were created to keep track of the accuracy 

of the fit indices in terms of selection of the level-one error structure. Additionally, the AIC, 

AICC, BIC, and LRT were examined, and this information was used to identify the model that 

would have been selected based on each of the fit indices.   Moreover, the results from the three-

model specifications that were previously mentioned were examined, in addition to the results 

that were produced by each of the various fit indices. This led to the seven levels of the analysis 

factor.  

Table 5 below illustrates an example of three data sets and the hypothetical parameter 

estimates (true estimate, Ƴ100 = 2.0) that would result from the three-model specifications and the 

estimates that would result from the models being selected by the fit indices. These indices may 

select the correct specification or one of the incorrect specifications.  Bolded results represent the 

hypothetical true level-one error structure. According to the table below, the results for the first 

data set illustrate the estimated fixed effects for each of the three level-one error structures (the 

first 3 columns of the table). The first row also includes results for each of the models selected 

by the various fit indices. Specifically, the AIC and AICC selected the model with Σ = ID; the 

BIC selected the model with Σ = ARMA(1,1); and finally, the LRT selected the correct model, Σ 

= AR(1). Similarly, for the second data set, the true error structure is ID. For that data set, all of 
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the fit indices (AIC, AICC, BIC, and LRT) correctly selected the level-one error structure. 

Lastly, for the third data set, the true level-one error structure is ARMA(1,1), and only the LRT 

correctly selected the ARMA(1,1) model.  

 

Table 5 
An Example of Results from Three Simulated Data Sets for the Shift in Level Effect, Ƴ100. 

 A priori Model Selection Fit Indices Model Selection 

Data set ID AR(1) ARMA(1,1) AIC AICC BIC LRT 

1 1.95 1.98 1.92 1.95 1.95 1.92 1.98 

2 2.02 1.97 1.95 2.02 2.02 2.02 2.02 

3 1.93 1.99 1.99 1.98 1.93 1.93 1.99 

 

Based on the model, the shift in level was modeled as a change in level between the 

baseline and the treatment phases with the fixed effect for the shift in level (Ƴ100 ) set to 2.0. The 

effect of the intervention on the trend was modeled as the change in slopes between the baseline 

and the treatment phases with the fixed effect for the intervention effect of the slopes (Ƴ110) set 

to 0.2.   Estimates were also obtained for the moving average parameter, autocorrelation 

parameter, variance within participants, variance in baseline levels across participants and 

studies, variance in treatment effects (shift in level) across participants and studies, variance in 

baseline slopes across participants and studies, and variance in treatment effect on the trends 

(change in slope) across participants and studies.  

Summary of analyses  

First, the study investigated the accuracy of the fit indices in selecting the appropriate 

covariance structure when using the three-level model to meta-analyze single-case data. An 
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indicator variable for each fit index was used to indicate whether or not the fit index correctly 

identified the correct level-one error structure. This variable was averaged across all 5000 data 

sets to obtain the proportion of times that each fit index correctly identified the error structure. 

Next, the accuracy of the fixed effects and the variance components were analyzed using the 

following dependent variables: bias (see Equation 40 below) can be described as the difference 

between the known parameter and the estimated values from the model output, for two of the 

four fixed effects: (Ƴ000, Ƴ100, Ƴ010, Ƴ110) and all of the variance components for level-one (σ
2, ρ, 

and the moving average coefficient); level-two  #�%� , #�'� ); and level-three ( #�%� , #�'� ); this 

difference or deviation was then averaged across all 5000 data sets to obtain the average bias. 

Additionally, relative bias was calculated for the parameters whose known values were other 

than 1 and did have levels of the factor that included 0. The RMSE represented the square root of 

the sum of the squared residuals; this was calculated by squaring the deviations between the 

estimated parameter and the true parameter, taking the average across all 5000 data sets, and 

finally the square root to obtain the RMSE (see Equation 41).    

Confidence interval coverage (the proportion of the confidence intervals at the .95 level 

that contained the true parameter estimates for both the fixed effects and the variance 

components) was again tracked with an indicator variable that determined whether or not the 

parameter estimate fell within the confidence interval range. This indicator was then averaged 

across the 5000 data sets to obtain the proportion of confidence intervals that contained the true 

parameter estimates. Similarly, confidence interval width (the average difference between the 

upper and the lower limits of the 95% confidence intervals for both the fixed effects and the 

variance components) was calculated for each of the 5000 data sets.  The width was averaged 

across the 5000 data sets to obtain the average confidence interval width. These outcomes were 
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computed for each of the 1120 conditions obtained by crossing the 160 data and design 

conditions with the seven levels of the analysis factor.  The percentage of non-convergence was 

also computed for each of the 160 conditions. 

 
 

 
 

Analyses to Examine Relationships between Design Factors and Outcome Variables 

Research Question One 

The evaluation of the accuracy of the fit indices to correctly select the level-one error 

structure was addressed by examining the percentage of time that each fit index appropriately 

guided the researcher to the correct error structure. For example, data were generated using a 

first-order autoregressive level-one error structure. The model was then run using all three of the 

aforementioned level-one error specifications, i.e. two misspecified models (uncorrelated and 

first-order moving average) and the correct model (a first-order autoregressive). The results of 

the three models was compared to estimate the proportion of times the AIC correctly identified 

the model (smallest AIC value), the proportion of times the BIC identified the model (smallest 

BIC value) the proportion of times the AICC identified the model (the smallest AICC value), and 

the proportion of times the likelihood ratio test (LRT) correctly identified the model (LRT 

statistically significant at α = .05). Also, the results of the model selected by the fit indices was 
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used for comparison of model selected by fit indices, or post hoc selection versus model selected 

a priori. The model selected a priori is the model the models that are run without the use of the 

fit indices. For example, the ID, AR(1), and ARMA (1,1) model was run to see how these results 

compared to the fit-index selected models. Additionally, to examine which design factors 

explained the variability that was found among the fit indices, general linear modeling (GLM) 

was used. The GLM model allowed the examination of the variability of the fit index selection as 

a function of the independent variables. The models were built with the criteria of discerning the 

effects whose eta-squared values were at least .06 or greater. The effect size, eta-squared (η
2) 

was calculated to determine the proportion of variability associated with, or explained by each 

effect. Using Cohen’s (1988) criteria for eta-squared, a small effect was described as η
2 = .01; a 

medium effect size η2 = .06; and a large effect as having η
2 = .14 or greater. Each model initially 

included only the main effects. Whether or not more complex parameters were added to the 

model was based upon the amount of variability that the first model explained. Specifically, if 

the model that contained only main effects explained a significant proportion of the variability, 

then neither two-way nor three-way interactions were added. However, if the fixed-effects only 

model did not explain the minimum 94% of the variability, then two-way interactions were 

included in the model. Finally, if the model still did not explain 94% of the variability, then more 

complex interactions were added to the model, such as three-way and four-way interactions until 

at least the 94% of the variability had been explained. If a medium effect was found (η2 >= .06), 

further follow-up analyses were conducted. A comparison of the means were done using line 

graphs to expound on the relationship between the different levels of that factor (e.g. number of 

studies included in the meta-analysis) and the variability of the outcome (e.g. AIC selected 

models). 
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Research Question Two – Research Question Five 

The remainder of the research questions was addressed similarly. The evaluation of the 

outcome of interests and the parameter estimates from the three level model used to meta-

analyze single case data were addressed by examining box-and-whisker plots to illustrate the 

distribution of the parameter estimates. Furthermore, to examine which design factors explained 

the variability that was found among the parameter estimates, general linear modeling (GLM) 

was used. The models were built with the criteria of discerning the effects whose eta-squared 

values were at least .06 or greater. The effect size, eta-squared (η2) were calculated to determine 

the proportion of variability associated with, or explained by each effect. Using Cohen’s (1988) 

criteria for eta-squared, a small effect was described as η2 = .01; a medium effect size η2 =.06; 

and a large effect as having η
2 = .14 or greater. Each model only included main effects. Whether 

or not more complex parameters were added to the model was based on the amount of variability 

that the first model explained. Specifically, if the model that contained only main effects 

explained a significant proportion of the variability, then neither two-way nor three-way 

interactions were added. However, if the fixed-effects only model did not explain the minimum 

variability, then two-way interactions were included in the model. Finally, if the model still did 

not explain the minimum variability, then more complex interactions were added to the model, 

such as three-way and four-way interactions until a substantial amount of variability had been 

explained. If a medium effect was found (η
2 =.06), further follow-up analyses were conducted. A 

comparison of the means were done using line graphs to expound on the relationship between the 

different levels of that factor (e.g. number of studies included in the meta-analysis) and the 

variability of the outcome (e.g. confidence interval coverage). 
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Chapter Summary 

This chapter outlined the methods for this study as well as described the purpose, 

research questions, design, and simulation conditions. The data generation methods, analytical 

procedures, and outcome measures have also been discussed. The goal of this chapter was not 

only to illustrate and to build upon previous work that had been done with the use of meta-

analyzing single case research using the three-level model, but also to extend this work by 

investigating various level-one error structure misspecifications and the use of fit indices to 

select the level one error structure. This Monte Carlo work will not only guide methodologists, 

but can also guide single-case researchers when determining intervention effectiveness in the 

presence of correlated level-one error structures. 
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CHAPTER FOUR: RESULTS 

 
 

The chapter displays the results for the six research questions in sequential order. The 

chapter begins with a detailed description of how the results were obtained.  First, the accuracy 

of the fit indices were examined. This is followed by the section that presents the outcomes of 

interest (bias and RMSE, confidence interval coverage and width, and Type I error and power) as 

related to the fixed effects, while the second half presents similar outcome of interests (bias, 

RMSE, confidence interval coverage and width) as related to the variance components.  The 

following research questions were addressed: 

1. To what extent do fit indices (log likelihood ratio test, AIC, adjusted AIC, and BIC) 

correctly identify level-one covariance structure when using a three-level meta-analytic 

single-case model? 

2.  To what extent are the fixed effects parameter estimates from a three-level meta-

analytic single-case model biased as a function of design factors (number of primary 

studies per meta-analysis, number of participants per primary study, series length per 

primary study), data factors ( variances of the error terms, covariance structures), and 

analysis factors (form of specification)? 

3. To what extent are confidence interval width and coverage for the fixed effects from 

a three-level meta-analytic single-case model affected as a function of design factors 

(number of primary studies per meta-analysis, number of participants per primary study, 
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series length per primary study), data factors (variances of the error terms, covariance 

structures), and analysis factors (form of specification)? 

4. To what extent are the Type I error and power for the test of the fixed effects from a 

three-level meta-analytic single-case model affected as a function of design factors 

(number of primary studies per meta-analysis, number of participants per primary study, 

series length per primary study), data factors (variances of the error terms, covariance 

structures), and analysis factors (form of specification)? 

5. To what extent are the variance component parameter estimates from a three-level 

meta-analytic single-case model biased as a function of design factors (number of 

primary studies per meta-analysis, number of participants per primary study, series 

length per primary study), data factors (variances of the error terms, and covariance 

structures), and analysis factors (form of specification)? 

6. To what extent are confidence interval width and coverage for the variance 

components from a three-level meta-analytic single-case model affected as a function of 

design factors (number of primary studies per meta-analysis, number of participants per 

primary study, series length per primary study), data factors (variances of the error 

terms, covariance structures), and analysis factors (form of specification)? 

There were 1120 conditions simulated in this Monte Carlo study using the seven design factors. 

These factors included the 1) the number of primary studies per meta-analysis (10 and 30);  2) 

the number of participants per primary study (4 and  8);  3) the series length or number of 

observations per participant (10 and 20);  4) variances of the error terms (most of the variance at 

level-one: [σ2=1; �� = 0.5, 0.05, 0.5, 0.05;  �� = 0.5, 0.05, 0.5, 0.05] and most of the variance at 

higher levels: [σ2=1; �� =  2, 0.2, 2, 0.2;  �� =  2, 0.2, 2, 0.2]);   5) the level for the fixed effects ( 
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0 or [2 for the shift in level and .2 for the shift in slope]);  6) the level of autocorrelation and the 

moving average parameter, respectively: [(0,0), ( .2, 0), (.4,0), (.2, .2), (.4, .4)]; and 7) the form 

of model specification [i.e. ID, AR(1), ARMA (1,1)], and error structure selected by AIC, AICC, 

BIC, and the LRT. Finally, this resulted in a 2x2x2x2x2x5x7 factorial design. 

First, the extent to which each fit index could correctly identify the covariance structure 

was evaluated. This question involved analyzing the proportion of times that each fit index 

correctly selected the appropriate level-one error structure. This was accomplished by first, 

looking at the box plots which illustrated the distribution of the correctly specified models across 

the four fit indices. Then, GLM models were run to explain the variability in the various 

proportions for the fit indices, with the dependent variable representing the correct proportion 

and the independent variables were the design factors in the study (the number of observations or 

series length, the number of participants, the number of studies to be included in the meta-

analysis, the variances of the error terms, the level of the treatment effect, the level of the 

autocorrelation and the moving average parameters, and the type of fit index). 

Next, the dependent variables or outcomes of interest (bias, RMSE, confidence interval 

coverage and width, type I error, and power) were analyzed for the fixed effects and the 

outcomes of interest (bias, RMSE, confidence interval coverage and width) for the variance 

components were evaluated. In order to compare the outcomes of different sizes, the relative bias 

was calculated for all of the outcomes where the parameter value was not equal to 1.0. The 

results of the study was then analyzed using PROC GLM in SAS to assess the relationship 

between the independent variables or outcomes of interest (bias, RMSE, confidence interval 

coverage and width, type I error, and power) and the dependent variables or the design factors 

for the simulation study (the number of primary studies per meta-analysis, the number of 
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participants per primary study,  the series length or number of observations per participant, 

variances of the error terms, the level for the fixed effects, the level of autocorrelation and the 

moving average parameter, and the form of model specification). In other words the outcomes of 

interest were the dependent variables and the design factors were modeled as the independent 

variables.  

These models were built with the intention of finding medium effects or larger (whose 

eta-squared values were equal to or greater than .06). The effect size, the eta-squared values (η
2) 

was calculated to measure the degree of association between the dependent variable and the main 

effects, or interactions, if necessary of the independent variables or the study’s design factors. 

Eta-squared is the proportion of variability in the outcome measure that is explained or 

associated with each of the effects in the simulation study. The formula is included below and 

can be described as the ratio of the effect variance (SSeffect) to the total variance (SStotal): 

 

 

The calculated η2 values were compared to Cohen’s (1988) standards for interpreting eta-squared 

values with a small effect as η2 = .01; a medium effect as η2 = .06; and a large effect as η2 = .14 or 

greater. Each model was first created using a main-effects only model. If this model did not 

explain at least 94% of the total variability, then higher order interactions (second-order 

interactions were added, then third-order interactions, and so on) were included in the model 

until at least 94% of the variability was explained. However, if the model explained at least 94%, 

then it was known that no interaction effects were necessary. If at least a medium effect was 

found, then line graphs or a box plots were created to further investigate the association between 

the outcomes of interest and the study’s design factors. All of the samples converged. 

η
2 = SSeffect / SStotal 
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Overall Correct Fit Index Identification  

 The first question involved the accuracy of the fit indices, specifically the proportion of 

times that each fit index correctly identified the correct level-one error structure.  

ID Model 

The box plot below (see Figure 4) illustrates the proportion of times that each fit index 

correctly identified the correct error structure, when the structure was the ID model. The largest 

mean value (M = 0.85, SD = 0.02), indicating that the ID model was correctly identified most 

often by the log likelihood ratio test (LRT). The smallest mean value (M = 0.67, SD = 0.03) for 

the proportion of times that the ID model was correctly selected was for the model selected by 

the AIC fit index.  

 

Figure 4. Boxplot representing the distribution of proportion correct for each fit index when the 
model specified is the ID model. 
 

LRT AIC AICC BIC 

Fit Indices 
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To further explore the variability in the proportion of times that each fit index correctly 

identified the ID model, a GLM model was run across these seven design factors (series length, 

number of participants in the study, number of primary studies included in the meta-analysis, 

variances of the error terms, the level of the fixed effects, and the type of fit index). The model, 

including two-way interactions, which explained 99% of the total variability revealed that the 

interaction effect between the number of primary studies included in the meta-analysis and the 

type of fit index (η2 = .064) used for model selection, met the aforementioned criteria for having 

at least a medium effect.  

 

Figure 5. Line graphs illustrating the mean proportion of times that the ID model was correctly 
specified for each of the four fit indices. 

Line graphs were then created to further examine the relationship between the proportion 

of times that the ID model was correctly selected with the interaction effect including the number 

of primary studies included in the meta-analysis and the fit index used for selection. Figure 5 

shows that the when the number of primary studies is increased (from 10 to 30), then the 

Number of Primary Studies
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proportion of the times that the ID model is correctly specified is increased across all fit indices. 

However, this increase is not identical across all fit indices. More specifically, when the number 

of studies is increased from 10 (M = 0.69, SD = 0.02) to 30 (M = 0.81, SD = 0.04), the mean 

increase in the proportion of times that the ID model is correctly selected is greatly improved by 

the BIC fit index. The least mean increase for the proportion of times that the fit index correctly 

selects the ID model is seen for the LRT. For the models selected by the LRT, when the number 

of primary studies is 30 (M = 0.85, SD = 0.03), the mean proportion is slightly greater than when 

the number of primary studies included in the meta-analysis is 10 (M= 0.84, SD = 0.02). 

First-order Autoregressive Model 

The box plot in Figure 6 below depicts the proportion of time that the various fit indices 

correctly selected the first-order autoregressive, AR(1), model. The AIC index had the least 

mean proportion of correctly identifying the AR(1) model (M = 0.80, SD = 0.06). The greatest 

proportion for the correct selection of the AR(1) model was for the log likelihood ratio test, LRT, 

M = 0.90, SD = 0.09. To further explore the variability observed in the box plots, GLM models 

were created.  

The model, including three-way interactions explained 98% of the total variability, and 

affirmed three effects that were significant: the series length or number of observations (η
2 = 

.10), the number of primary studies included in meta-analysis (η2 = .16), and the type of fit index 

used for selection (η2 = .24). Furthermore, additional plots were then used to further examine the 

relationship of the mean proportion of correctly identifying the AR(1) model with these other 

effects. 
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Figure 6. Boxplot representing the distribution of proportion correct for each fit index when 
the model specified is the AR model. 
 

Figure 7 below shows the direct relationship between the proportion of time for selecting 

the AR model correctly across the levels for series length. Moreover, the graph depicts that the as 

the series length increases from 10 to 20 then the proportion for correctly identifying the AR 

model also increases from a mean of 0.81 (SD = 0.10) to a mean of 0.87 (SD = 0.05). The 

variability is also decreased with increased number of observations or a greater series length. 

Next, the association between the mean proportion of correctly selecting the AR(1) 

model and the number of primary studies is depicted in Figure 8 below. The means for the 

proportion of correctly selecting the AR(1) model is shown above (see Figure 8, pg. 90) across 

the levels for the number of primary studies to be included in the meta-analysis. The graph 

LRT AIC AICC BIC 

Fit Indices 
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illustrates that as the number of studies increases from 10 (M = 0.81, SD = 0.10) to 30 (M = 0.87 

, SD = 0.05), the proportion of times for correct identification of the AR(1) model also increases.  

 

 

 

Figure 7. Box plots illustrating the distribution for the proportion of the AR model that was 
correctly specified with series length. 
 

Next, the association between the mean proportion of correctly selecting the AR(1) 

model and the number of primary studies is depicted in Figure 8 below. The means for the 

proportion of correctly selecting the AR(1) model is shown above (see Figure 8) across the levels 

for the number of primary studies to be included in the meta-analysis. The graph illustrates that 
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as the number of studies increases from 10 (M = 0.81, SD = 0.10) to 30 (M = 0.87 , SD = 0.05), 

the proportion of times for correct identification of the AR(1) model also increases.  

 

 

 

Figure 8. Box plots illustrating association of the mean proportion of correctly selecting the AR 
model and the number of primary studies included in the meta-analysis. 

 

First-order Autoregressive Moving Average model 

The distribution for the proportion of times that the first-order autoregressive moving 

average model, ARMA (1, 1) was correctly identified is shown in Figure 9 below. The box plot 

below illustrates the distribution of the mean proportion of times that the first-order 

autoregressive moving average model was correctly identified by the various fit indices. 
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Although there appears to be some variability among the fit indices, none of the fit indices 

correctly identified the ARMA model more than 20% of the times. The greatest mean proportion 

for correctly selecting the ARMA(1,1) model was found when the fit index used was the AIC (M 

= 0.19, SD = 0.02). The fit index with the smallest mean proportion times for correctly 

identifying the ARMA(1,1)  model (M = 0.07, SD = 0.12) was the LRT. To further explore the 

variability, GLM models were run. 

  

 

Figure 9. Box plot illustrating the distribution of the mean proportion of times that the first-order 
autoregressive moving average model was correctly identified by the various fit indices. 

 

The model, including two-way interactions, explained 98% of the total variability, and 

indicated that the interaction effect between the number of primary studies to be included in the 

meta-analysis and the type of fit index (η
2 = .08) constituted a medium effect. The relationship 

 

LRT AIC AICC BIC 

Fit Indices 
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for the mean proportion of correctly identifying the first-order autoregressive moving average 

model and the interaction effect between the number of primary studies to be included in the 

meta-analysis and the type of fit index is depicted by the line graph below (see Figure 10).  

The graph shows that the effect of the number of primary studies to be included in the 

meta-analysis depends on the type of fit index used to select the correct model. Specifically, as 

the number of primary studies is increased from 10 (M = 0.17, SD = 0.03) to 30 (M = 0.08, SD = 

0.02), the greatest decrease is observed for the model selected by BIC. As the number of primary 

studies to be included in the meta-analysis is increased from 10 (M= 0. 07, SD = 0.01) to 30 (M= 

0. 06, SD = 0.01), the smallest impact is seen for the LRT. 

 

 

Figure 10. Line graph illustrating the association between the mean proportion for correctly 
selecting the ARMA (1,1) model and the interaction effect of between the number of primary 
studies to be included in the meta-analysis and the type of fit index. 
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Fixed Effects 

The second question referred to the bias and the RMSE associated with the fixed effects 

as a function of the seven factors used in this Monte Carlo study. The third question described 

the extent to which confidence interval coverage and width of the fixed effects varied as a 

function of the seven design factors. Furthermore, question four involved the degree to which 

there was variability in the power and Type I error of the fixed effects as a function of the 

study’s design factors. The percentage of non-convergence was not an issue in the study, 

convergence rates were all 1. 

Bias  

The distribution of bias values for the fixed effect for the shift in level (phase) and the 

interaction effect (shift in slopes) is shown in Figure 11 and Figure 12 below, respectively.  

Overall average treatment effect for the phase (shift in level). The average bias values 

were close to 0 across all seven models with little to no variation, the eta-squared value for the 

type of model was .000099588. Specifically, the average bias was the smallest in magnitude (M 

= -.00001, SD = .0043) for the model selected by the log likelihood ratio test (LRT) and largest 

was for the first-order autoregressive moving average model, ARMA (1,1), (M = -.00009, SD = 

.0044). As indicated by the results above, there was little to no variability across the models for 

the average bias values. GLM models, including 5-way interactions, were run to see if any of the 

design factors had a significant effect, but none were found. Although the model explained 95% 

of the variability, none of the effects met the aforementioned criteria for a medium effect. Due to 

this finding, no further exploration was appropriate, and the variability that was observed in the 

bias values can be attributed to sampling error. 
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Overall average treatment effect for the interaction effect (shift in slopes). Similar 

results were found for the bias values in interaction effect (shift in slopes). The distribution of the 

bias values is shown in Figure 12. The average bias values were close to 0 across all seven 

models with again, little to no variation. 

 

Figure 11. Box plots illustrating the distribution for the bias values for the phase effect (shift in 
level) across the 7 different models. 
 

The type of model (η2 = .000017531) explained very little of the variability in the bias 

values, again indicating similarity of the bias values across models. Specifically, the average bias 

was the smallest (M = -.000001250, SD = .0017) for the LRT model. The first-order 

autoregressive, AR(1), model had the largest average bias value (M = .000001250, SD = 0.0016). 

These values reveal very little to no bias present in the fixed effects. According to Hoogland and 

Boomsma (1998), parameter estimates are acceptable with relative bias values less than five 

percent. The bias values for the overall interaction effect are well below this criterion, therefore 

ID AR ARMA LRT AIC AICC BIC 

Type of Models 
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no further analyses was warranted. The bias illustrated in the figure below can be attributed to 

sampling error, and have minimal impact on the parameter estimates. 

 

Figure 12. Box plots illustrating the distribution for the bias values for the interaction effect 
(shift in slopes) across the seven different models.  
 

Root Mean Square Error (RMSE) 

The distribution of the RMSE values for each of the intervention effects (shift in level 

and shift in slopes) is depicted across the seven models in Figures 13 and 16, respectively.  

 Overall average treatment effect for phase (shift in level). The average RMSE value 

for the treatment effect for phase (shift in level) was similar across the seven models; with the 

type of model explaining very little of the variability (η2 = .00004). This small eta-squared value 

reinforced the noticeably small amount of variability across the seven models. The smallest 

ID AR ARMA LRT AIC AICC BIC 
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RMSE mean value was for the first-order autoregressive model (M = 0.32, SD = 0.13). The 

largest mean RMSE value (M = 0.32, SD = .13) for the phase effect was for the ID model.  

 

 

 

Figure 13. Box plots illustrating the distribution for the RMSE values for the phase (shift in 
level) across the seven models. 
 

To further explore the variability in the RMSE values for the phase effect, a GLM model 

was created. The main effects only model explained over 96% of the variability and indicated 

that two of the design factors had at least a medium effect, number of primary studies included in 

the meta-analysis (η2 = .45) and the variances of the error terms (η
2 = .49).  The box plots below 

was used to represent the RMSE values as a function of the number of primary studies included 

ID AR ARMA LRT AIC AICC BIC 
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in the meta-analysis. As illustrated in the graph (see Figure 14), the RMSE values decreased 

from a mean of 0.40 (SD = .11) to a mean of 0.23 (SD = 0.23) as the number of primary studies 

included in the meta-analysis increased from 10 to 30. There was also a noted difference in the 

variability of the RMSE values for the shift in level as the number of primary studies increased 

from 10 to 30. 

 

Figure 14. Box plot depicting the estimated RMSE values for the shift in slopes as a function of 
number of primary studies included in meta-analysis. 

 
Similarly, a box plot was created to further analyze the relationship between the RMSE 

values and the variances of the error terms. Figure 15 below represents the relationship, 

moreover the figure portrays that as the variance shifts from most of the variance for the error 

terms at level-one to most of the variance at the upper levels, the RMSE mean values increase 
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from 0.23 (SD = 0.06 ) to 0.40 (SD = 0.11). Note that the variance of the error terms for the 

residual variance was held constant at 1.0 across conditions. Thus, the conditions that have most 

of the variance shifted to the upper levels have more total variance. The variability in the RMSE 

values for the shift in level also tended to decrease with more variance in the upper levels as 

opposed to more variance at level-one. 

 

Figure 15. Box plot depicting the estimated RMSE values for the shift in level as a function of 
the variances of the error terms. 

 
Overall average treatment effect for slopes (shift in slopes). The distribution of the 

RMSE values for the interaction effect is shown in Figure 16 below. The distribution was very 

similar across the seven models (η
2 = .00000), indicating little to no variability across models for 

the mean RMSE values. The smallest mean value (M = 0.10, SD = .042) for the first order 

Most at Level-one Most at Upper Levels 
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autoregressive model (AR). The largest mean RMSE value can be observed for the ID model (M 

= 0.10, SD = .042).  

 

 

Figure 16. Box plots illustrating the distribution for the RMSE values for the interaction effect 
(shift in slopes) across the seven models. 

 
Variation in the RMSE values were explored by modeling RMSE values across the seven 

design factors. The main effects only model explained 95.6% of the variability and revealed that 

only two of the design factors had at least a medium effect according to the aforementioned 

criteria. The means for the interaction effect for the RMSE values as a function of the number of 

primary studies (η2 = .45) included in the meta-analysis are shown in Figure 17 below. As 

depicted in the figure, as the number of primary studies increased from 10 to 30, then the RMSE 

mean values decreased from 0.13 (SD = .04) to 0.08 (SD = 0.02). 
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Figure 17. Box plot depicting the estimated RMSE values for the shift in slopes as a function of 
number of primary studies included in Meta-Analysis. 
 

The second factor that had at least a medium effect was the variance for the error terms 

(η2 = .45) in the main effects only model for the RMSE values for the interaction effect (shift in 

slopes). Figure 18 illustrates the relationship between the RMSE values and the variance for the 

error terms. Specifically, as the variance in the error terms shifted from most of the variance 

being at the level-one to most of the variance being at the upper levels, the RMSE mean values 

increased from 0.08 (SD = 0.02) to 0.13 (SD = 0.04). 
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Figure 18. Box plot depicting the RMSE values for the shift in slopes as a function of the error 
variances. 
 

Confidence Interval Coverage  

The distribution of confidence interval coverage rates for each of the fixed effects is 

illustrated across the seven models in Figures 19 and 20 below. 

 Overall average treatment effect (shift in level). The mean confidence interval 

coverage rate was comparable across the seven models (see Figure 19 below), with means that 

are very close to the nominal value of 0.95. The type of model (η2 = .008) explained little to none 

of the variability, which supported the small variation that was observed across models in the 

box plots. The smallest mean confidence interval coverage was for the ID model (M = 0.949, SD 

= 0.003); the largest mean confidence interval coverage (M = 0.951, SD = 0.003) was observed 

Most at Level-one Most at Upper Levels 
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for the LRT model. The range for the interval coverage was 0.942 to 0.964, which falls within 

Bradley’s (1978) criterion; therefore no further analyses were warranted.  

 

Figure 19. Box plots illustrating the distribution of confidence interval coverage rates for the 
phase effect (shift in level) across the seven different models. 
 

 Overall average treatment effect for slopes (shift in slopes). The average confidence 

interval coverage rates for the interaction effect, or the shift in slopes, were at the nominal level 

of .95, ranging from a mean of .948 (SD = .0033) for the ID model and .951 (SD = .0036) for the 

first-order autoregressive moving average model. The range for the interval coverage for the 

interaction effect was 0.939 to 0.964; this range falls within Bradley’s (1978) criterion for 

acceptable coverage limits, therefore no further analyses was warranted in terms of explaining 

the variability by the study’s design factors. 
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Figure 20. Boxplots illustrating the distribution for the confidence interval coverage for the 
interaction effect across the seven models. 
 

Confidence Interval Width 

 The box plot depicting the distribution of the confidence interval width estimates for the 

two intervention effects (shift in level and shift in slopes) across the seven models are displayed 

below in Figures 21 and 25, respectively. 

 Overall average treatment effect for phase (shift in level).  The average confidence 

interval width for the phase effect across the seven models was comparable. The mean 

confidence interval width was 1.35 (SD = .58) for first-order autoregressive model and the four 

fit-index selected models, however, for the ID model, which had a slightly larger mean width (M 

=1.36, SD = .58). The largest mean confidence interval width (M = 2.51, SD = 3.48) was for the 
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first order autoregressive moving average model. Furthermore, the box plots reveal that there 

may be some variability within each model.  

 

 

 

Figure 21.  Boxplots to explore distribution of confidence interval width for the phase effect 
(shift in level) across all seven models. 
 

GLM models were used to further investigate the variability by modeling confidence 

interval width as a function of the design factors. The model, including fourth-order interactions 

explained 96% of the variability, however only four effects met the aforementioned criteria as a 

medium effect: number of primary studies included in meta-analysis (η2= .10), the type of model 

(η2= .08), the variances of the error terms (η
2= .10), and the interaction between autocorrelation 

ID AR ARMA LRT AIC AICC BIC 

Type of Models 



www.manaraa.com

105 

 

parameter and type of model (η2= .16). Graphs were created to further explore the relationship of 

confidence interval width with each of the significant effects.   

 

Figure 22. Box plot illustrating the confidence interval width for the phase effect (shift in level) 
as a function of the number of primary studies included in meta-analysis. 
 

 The first graph (see Figure 22 above) shows that as the number of primary studies 

included in the meta-analysis increased from 10 to 30, then the mean confidence interval width 

for the phase effect also decreased. Additionally, the plots again depict that there is a decrease in 

the variability of the interval coverage width for the phase effect (shift in level) when the number 

of primary studies is increased from 10 to 30. The variability also tended to decrease for the 

width of the phase effect when the number of primary studies increased. 
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Figure 23. Graph illustrating the mean confidence interval width for the phase effect as a 
function of the variances of the error terms. 
 

The above graph in Figure 23 depicts the relationship between the mean confidence 

interval width for the phase effect and the variances of the error terms. The box plot depicts that 

as the variances of the error terms shifted from most of the variance at level-one to most of the 

variance of the error terms at the upper levels, the mean interval width increased from 0.97 (SD = 

0.31) to mean of 1.73 (SD = 0.53).  However, there were also more outlying points when most of 

the variance shifted to the upper levels. Thus, when most of the variance shift from being at 

level-one to most of the variance being at the upper levels (more total variance), then the mean 

and variance tended to increase. 

 

Most at level-one Most at Upper levels 
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Figure 24. Line graph depicting mean confidence interval width as a function of the interaction 
effect between the type of model and the level of the autocorrelation parameter. 
 

Lastly, the relationship for the interval width as a function of both the type of model and 

level of autocorrelation parameter was examined using a line graph. Figure 24 above illustrates 

that the confidence interval width is comparable across six of the seven models. However, the 

first order autoregressive moving average, ARMA (1, 1), model seemed to be an anomaly. 

Specifically, the mean confidence interval width becomes smaller as the level of the 

autocorrelation parameter increased, for ρ = 0.0 (M = 5.76, SD = 4.97), ρ = 0.2 (M = 2.02, SD = 

3.34), and ρ = 0.4 (M = 1.36, SD = 0.59).  

Overall average treatment effect for the interaction (shift in slopes).  The average 

confidence interval width for the shift in slopes across the seven models was similar, except 

again for the first order autoregressive moving average model. The mean confidence interval 

width was 0.44 (SD = 0.19) for the six models; however, the mean was larger for the ARMA 

Level of Autocorrelation
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(1,1) model (M = 0.81, SD = 1.20). Furthermore, the box plots (see Figure 25 below) reveal that 

there may be some variability within each model, particularly for the ARMA(1,1) model.  

 

 

Figure 25. Box plot illustrating the distribution for the confidence interval width for the 
interaction effect (shift in slopes) across the seven models. 
 

 

To further explore the variability in the mean confidence interval width for the interaction 

effect, GLM models were run. The results of the model, including 5-way interactions, explained 

95% of the variability and revealed that there were three effects that constituted medium effects. 

These effects were as follows: variances of the error terms (η2= .09), the number of primary 

studies included in the meta-analysis (η
2= .10), and the interaction of level of autocorrelation 
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parameter and the type of model (η
2= .11). The means for the confidence interval width as a 

function of each of these effects are displayed in the Figures 26, 27, and 28 respectively. 

The relationship for the variances of the error terms and the mean confidence interval 

width is illustrated in Figure 26 below. This relationship appears to be more direct, moreover, as 

the variances of the error terms shifted from most of the variance being at level-one (M = 0.34, 

SD = 0.26) to most of the variance appearing at the upper levels (M = 0.64, SD = 0.62), the 

mean confidence interval width increased. 

 

 

Figure 26. Box plot depicting relationship for confidence interval width for the shift in slopes as 
a function of the variances for the error terms. 
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Figure 27. Box plot illustrating mean confidence interval width for the interaction effect as a 
function of the number of primary studies included in meta-analysis. 
 

 The mean confidence interval width as a function of the number of primary 

studies included in the meta-analysis is depicted in Figure 27 above. The figure shows that there 

is an inverse relationship, that as the number of primary studies increased then the mean 

confidence interval width decreased. Specifically, as the number of primary studies included in 

the meta-analysis increased from 10 to 30, then the mean confidence interval width decreased 

from 0.65 (SD = 0.62) to 0.34 (SD = 0.25).  

Finally, the mean confidence interval width is displayed as a function of the interaction 

effect between type of model and the level of the autocorrelation parameter (see Figure 28 

below). Similarly, the mean confidence interval width for the shift in slopes appeared 
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comparable across all of the models, except for the first-order moving average parameter, 

ARMA (1, 1). According to the graph, the mean confidence interval width for the ARMA (1,1) 

model tended to decrease as the level for the autocorrelation parameter increased. Specifically, 

for ρ = 0.0 (M = 1.71, SD = 1.55), ρ = 0.2 (M = 0.71, SD = 1.35), and  ρ = 0.4 (M = 0.45 , SD = 

0.20). 

                                              

 

Figure 28. Line graph illustrates the mean confidence interval width for the shifts in slope as a 
function of the interaction effect between type of model and level of autocorrelation parameter.  
 

Type I Error 

The box plot depicting the distribution of the Type I error rates for the two intervention 

effects (shift in level and shift in slopes) across the seven models are displayed below in Figures 

29 and 30, respectively. 

 Overall average treatment effect for phase (shift in level).  The average type I 

error for the phase effect across the seven models was similar, the smallest mean Type I error 
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was for the ARMA model (M = 0.049, SD = 0.003), while the largest mean Type I error was for 

the LRT model (M = 0.050, SD = 0.003). The means were comparable across models, with the 

type of model (η2 = 0.008236), explaining very little of the total variability. Additionally, the 

range, 0.04 to 0.06 for the Type I error falls within Bradley’s (1978) criterion. Therefore, no 

further analyses were warranted. 

 

 

Figure 29.  The distribution for the Type I error for the phase effect (shift in level) across the 
seven models. 
 

Overall average treatment effect for the interaction effect (shift in slopes).  The 

distribution for the Type I Error for the interaction effect is displayed in Figure 30 below. The 

average type I error for the interaction effect across the seven models was comparable, the 

largest mean Type I error for the LRT model (M = .050, SD = .004), conversely the smallest 
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mean Type I error for the ARMA(1,1) model (M = .049, SD = .004). Again, the means were 

comparable across models, with the type of model (η
2 = 0.027), explaining very little of the total 

variability. Additionally, the range [0.036, 0.059] for the Type I error falls within Bradley’s 

(1978) criterion; therefore, no further exploration was necessary. 

 

 

Figure 30. Box plots showing the distribution of the Type I error for the interaction effect (shift 
in slopes) for across the seven models. 
 

Power for the Test of Fixed Effects 

 The box plot depicting the distribution of the power estimates for the two intervention 

effects (shift in level and shift in slopes) across the seven models are displayed below in Figures 

31 and 33 respectively. 
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 Overall average treatment effect for phase (shift in level).  The distribution for the 

power estimates for the phase effect across the seven models was comparable. The smallest 

mean power estimates was for the ARMA model (M = 0.982, SD = 0.032), conversely, the 

largest mean power estimate was for the AR model (M = 0.983, SD = 0.031). The eta-squared (η2 

= .00015) for the type of model supports the small amount of variability among the seven 

models. 

 

 

Figure 31. Box plots displaying the distribution for the power estimates for the phase effect 
across the seven models. 
 

To further explore the variability, GLM models, including two-way interactions were 

used, this model explained 97% of the total variability. Additionally, the model revealed that the 
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interaction effect between the number of primary studies and the variance of the error terms met 

the aforementioned criteria for being a medium effect (η2= .30).  Line graphs were then used to 

analyze the relationship between this effect and the mean power estimates.  

 

 

Figure 32. Line graphs illustrating the relationship between the mean power estimates and the 
interaction effect of the variances of the error terms and the number of primary studies included 
in the meta-analysis. 
 

The line graphs above (see Figure 32) depicts that the mean power estimate is dependent 

upon both factors. For the cases when the error variances are mostly at the level-one, the effect 

on the power estimates does not depend on the number of primary studies included in the meta-

analysis. However, when most of the error variances are at the upper levels, then when the 

number of primary studies shifts from 10 to 30 then the mean power estimates increase from M = 

0.93, SD = 0.02  to M = 0.99, SD = 0.0008. 

Error Variances
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Overall average treatment effect for the interaction (shift in slopes).  The average 

power estimate for the interaction effect (shift in slopes) across the seven models (η
2= .00002) 

was comparable. 

 

 

Figure 33. Box plots displaying the distribution for the power estimates for the interaction effect 
across the seven models. 
 

To further examine the variability in the power estimates for the interaction effect, GLM 

models were created. The main effects only model explained 96% of the total variability, 

revealing two factors that met the criteria for being considered at least a medium effect: the 

variances of the error terms (η2  = .42) and the number of primary studies included in the meta-

analysis (η2 = .51). The power estimates as a function of each of these factors are presented in 

Figures 34 and 35 below. 
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The power estimates as a function of the error variances are displayed below (see Figure 

34). The power estimates decrease as the variances of the error terms are shifted from most of the 

variance at level-one (M = 0.71 , SD = 0.24) to most of the variance appearing at the upper levels 

(M = 0.36 , SD = 0.17 ).   

 

 

Figure 34. Box plots illustrating the relationship between the mean power estimates for the 
interaction effect and the variances of the error terms. 
 

The power estimates as a function of the number of primary studies reveal that there is a 

direct relationship between the two parameters. As the number of primary studies increase from 

10 to 30, then the power estimates increased from a mean of .34 (SD = 0.17) to a mean of .73 

(SD = 0.21). 
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Figure 35. Box plots illustrating the relationship between the mean power estimates and the 
number of primary studies included in the meta-analysis. 
 

Variance Components 

 Questions five and six were similar to questions two and three, except that the variance 

components were analyzed instead of the fixed effects. Specifically, question five examined the 

bias and RMSE associated with the variance components as a function of the seven factors used 

in this Monte Carlo study. The final question described the degree to which the confidence 

interval coverage and width for the variance components varied as a function of the seven design 

factors.  
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Relative Bias  

The distribution of relative bias values for the variance components for the shift in level 

(phase) and the interaction effect (shift in slopes) is shown in Figure 36 and Figure 38 below.      

Relative bias was used for variables whose values were other than 1.0, but did not have levels 

that included 0. This enabled comparisons to be made across the different values of that variable. 

For example the levels for the variances of the error terms were 0.5 and 2.0. This simply 

involved dividing the bias estimates by the parameter value. 

Level-three variance for the overall average treatment effect for the phase (shift in 

level). The average relative bias values were close to 0 across all of the models (the ID model 

and the first-order autoregressive moving average model). For the remainder of the models, the 

mean bias for the level-three variance components was similar, the eta-squared for the type of 

model = .007, further indicating that there was little variability among the type of model. 

Specifically, the average bias was the smallest (M = 0.02, SD = 0.02) for the ID model and 

largest was for the first-order autoregressive moving average model (M = 3.33, SD = 19.73). To 

further examine the variability of the bias for the level-three phase variance, GLM models were 

run. The model, including 5-way interactions, were run to see if any of the design factors had a 

significant effect, but none was found. Although the model explained 95% of the variability, 

none of the effects met the aforementioned criteria for a medium effect. Due to this finding, no 

further exploration was appropriate. 

Due to the large amount of variability found in the bias estimates, the data were trimmed 

to produce plots where the distribution of the bias in the level-three phase effect can be examined 

for the design factors. Figure 37 below shows the distribution of the trimmed data, further 
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analysis was conducted to see if there were any medium or larger effects. The results of these 

additional analyses are explicated in Appendix A.  

 

 

Figure 36. Box plots showing the distribution of the bias for the level-three shift in level (phase 
effect) across the seven models. 

 

Level-three variance for the overall average treatment effect for the interaction 

effect (shift in slopes). The average relative bias values were close to 0 for the first-order 

autoregressive moving average model (M = 0.007, SD = 0.02). The relative bias mean estimate 

for the ID model was 0.32 (SD = 3.49). For the remainder of the models, the mean bias for the 

level-three variance components was comparable, the eta-squared for the type of model was 

.007, further indicating that there was little variability among the type of model.  
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Figure 37. The box plot illustrating the trimmed distribution of the relative bias for the phase 
effect (shift in slopes) across the seven models. 

 

To further examine the variability of the bias for the level-three phase effect, GLM 

models were run. The model, including 5-way interactions, explained 94% of the total 

variability, however none of the design factors had a medium effect, η2 > .0588. Due to this 

finding, no further exploration was warranted on the original data. However, the data were 

trimmed for further analysis which is explained in detail below and in Appendix A. 

Due to the large amount of variability found in the bias estimates, the data were trimmed 

to produce plots where the distribution of the bias in the level-three interaction effect can be 

examined for the design factors. Figure 39 below shows the distribution of the trimmed data for 

the level-three interaction effect for the shift in slopes, further analysis was conducted to see if 
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there were any medium or larger effects on the bias by the study’s design factors. The results of 

these additional analyses are thoroughly presented and explained in Appendix A .  

 

 
Figure 38. Box plots showing the distribution of the untrimmed bias for the level-three 
interaction effect (shift in slopes) across the seven models. 
 

 

The box plots indicate that the means are similar across the seven models (η2=.007), 

suggesting that the type of models did not explain a significant portion of the variability. GLM 

models were run to further examine the variability among the variance components. 

Furthermore, the model, including five-way interactions explained 94% of the total variability. 

However, none of the factors led to medium effects, indicating that the observed variability can 

be attributed to sampling error; and no further analyses was necessary. 
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Figure 39. The distribution for the trimmed level-three variance for the overall average treatment 
effect for the interaction (shift in slopes). 

 

Level-two variance for the average treatment effect for the phase (shift in level). The 

distribution for the level-two variance components for the overall average treatment effect for 

phase is displayed in Figure 40 below on page 123. 

After trimming the data, which is displayed below in Figure 41, the box plots illustrate 

this distribution of the trimmed relative bias values for the level-two variance for the phase effect 

(shift in level) across the seven models. To further explore the effect of the design factors and the 

combination of the design factors, GLM models were run. 
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Figure 40. Box plot depicting the distribution for the level-two variance for the phase effect 
(shift in level) across the seven models. 
 

 

The findings, (including the graphs) and explanations for the GLM model for this design 

factor is presented in greater detail in Appendix A.  The results revealed one medium or larger 

effect: the interaction of the level of autocorrelation and the type of model (η2= 0.22).  

Line graphs were then produced to further investigate this relationship and found that the 

trimmed relative bias for the level two variance for the phase effect (shifts in level) was 

comparable across all of the models as the level of the autocorrelation increased However, for 

the ID model, the mean relative bias tended to increased greatly as the level of autocorrelation 

increased. 
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Figure 41. Box plot representing the trimmed distribution for the level-two phase effect (shift in 
slopes) bias across the seven models. 

 

Level-two variance for the overall average treatment effect for the interaction (shift 

in slopes).  The distribution illustrating the distribution for the bias for the level-two variance 

components for the interaction effect is displayed in Figure 42 below. The plots reveal that the 

means across the models (η
2 = .007) are similar. The largest mean for relative bias was observed 

for the first-order autoregressive model (M = 8.32, SD = 44.89) and the smallest mean was for 

the ID model, M = 0.64, SD = 3.45.  
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To further explore the variability, GLM models were run. The model, including five-way 

interactions explained 93% of the total variability and revealed no substantial effects. Therefore, 

no further analyses were necessary on the original data. 

 

 
 
Figure 42. Box plots illustrating the distribution for the level-two variance component for the 
interaction effect (shift in slopes) across the seven models. 
 
 

 

Due to the extreme variability noted in the graphs, the data were trimmed so that the 

relative bias could be further investigated. The box plots below (see Figure 43) show the 

distribution of the trimmed data. Further analyses were run to further examine the relationship 
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with the trimmed data and the design factors (the results of the additional analyses can be found 

in Appendix A). 

 

Figure 43. The distribution of the trimmed relative bias for the level-two variance for the 
interaction. 
 

Level-one or Residual Variance. The distribution for the level-one or residual variance 

is displayed in Figure 44 below across the seven models. The plots revealed that there is 

variability across models in the mean bias for the level-one variance. The largest mean bias 

estimate is observed for the first-order autoregressive moving average model (M = 0.20, SD = 

0.15), conversely, the smallest mean bias estimate is seen for the ID model (M = -0.08, SD = 

0.06). To further explore the variability in the bias estimates, GLM models were run. The model, 

including 5-way interactions, explained 94% of the total variability, and revealed the following 
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medium effect: the interaction between the level of the autocorrelation parameter and the type of 

model (η2 = .08).  

 

 
 
Figure 44. Box plots illustrating the distribution for the level-one variance (residual variance) 
across the seven models. 
 
 
 

Line graphs were then created to examine the relationship between the bias in the level-

one variance and the interaction effect between the level of autocorrelation and the type of 

model. Figure 45 below illustrates this relationship, depicting that the effect of the level of the 

autocorrelation parameter on the level-one bias estimates depends on the type of model. 

Moreover, as the level of the autocorrelation parameter increased, the bias increased for five of 

the models (the AR models and the models selected by each of the four fit indices). This 
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correlation was similar for the ID model, but in the inverse direction. Specifically, as the level of 

the autocorrelation increased, then the bias increased for the ID model, but in the negative 

direction. Lastly, the ARMA model had the least bias for the level-one variance when ρ = 0.2, 

then the mean bias increased when ρ = 0.4, and then largest for when the autocorrelation 

parameter was 0. 

 

 
Figure 45. Line graph illustrating the mean bias in the level-one variance (residual variance) and 
the interaction effect of the level of the autocorrelation parameter and the type of model. 
 
  
 

Autocorrelation Parameter.  The box plot (see Figure 46 below) depicting the 

distribution of the bias for the autocorrelation parameter across all of the models, except for the 

ID model (where the autocorrelation parameter was estimated to be 0). As observed in the Figure 

46, the means for the bias of the autocorrelation parameter varied across all models. The smallest 

mean bias for the autocorrelation parameter was observed for the AR model (M = -0.0007, SD = 
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0.002), the largest mean bias was observed for the first-order autoregressive moving average, 

ARMA (1,1), model (M = -0.03, SD = 0.08).  

 

 

Figure 46. Box plot depicting the distribution of the bias for the autocorrelation parameter across 
the six models. 
 

To further examine the variability, GLM models were run. The model, including three-

way interactions explained 94% of the total variability.  The results of the model indicated that 

the three-way interaction among the variances of the error terms, the level of the autocorrelation 

parameter, and the type of model (η
2 = 0.12) met the aforestated criteria for being a medium 

effect. Line graphs were then created to further explore the relationship of the means for the 

autocorrelation parameter across this interaction effect.  
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In Figure 47 below, the means for the bias of the autocorrelation parameter across the six 

models for when most of the variance is at the upper levels is displayed. The mean bias for the 

autocorrelation parameter was minimal across five of the models across all levels of the 

autocorrelation parameter. The variability in the mean bias was greater for the ARMA (1,1) 

model across the various levels of the autocorrelation parameter. For this model, the bias was 

minimal, M = -0.0004, SD = 0.006, when the autocorrelation parameter was 0.4. The bias then 

increased as the autocorrelation parameter increased from 0.0 (M = -0.007, SD = 0.002) to 0.2 (M 

= -0.01, SD = 0.02) for the ARMA (1,1) model. The relationship is very similar for when most of 

the variance is at level-one, however the mean bias is greater in the negative direction when the 

autocorrelation parameter is equal to 0.   

First-Order Autoregressive Moving Average Parameter. The distribution of the bias 

for the moving average parameter is displayed in Figure 48 below. The means across the five 

models (the moving average parameter was estimated to be zero for both the ID and the AR 

models) varied. As illustrated by the figure, the mean bias for the moving average parameter is 

smallest for the models selected by the AIC and AICC (M = -0.067, SD = 0.154). The mean bias 

is largest for the first-order autoregressive moving average model, M = 0.16, SD = 0.15. 

To further examine the variability in the bias of the moving average parameter, GLM 

models were run. The main-effects only model explained 94% of the total variability and 

revealed that there were two significant medium effects: the type of model (η2 = 0.27) and the 

level of the moving average parameter (η
2 = 0.61). Graphs were then created to represent the 

relationship between the mean bias for the moving average parameter and each of the effects. 

The relationship between the mean bias of the moving average parameter and the level of 

the moving average parameter is depicted below (see Figure 49). The graph shows that as the 
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level of moving average parameter increased from 0.0 (M = 0.08, SD = 0.11) to 0.2 (M = -0.12, 

SD = 0.08) to 0.4 (M = -0.27, SD = 0.14), the mean bias also increased for the moving average 

parameter.  

 
 

 
Figure 47. Line graphs illustrating the means for the relationship of the bias in the 
autocorrelation parameter and the three-way interaction among the variances of the error terms, 
the level of the autocorrelation parameter, and the type of models. 

Level of Autocorrelation

Level of Autocorrelation

Most of the variance at the Upper Levels 

Most of the variance at level one 
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Figure 48. Box plots showing the distribution for the bias in moving average parameter estimate 
across the five models. 
 

Root Mean Square Error (RMSE) 

The distribution of the RMSE values for the variance components for the shift in level (phase) 

and the interaction effect (shift in slopes) is shown in Figure 50 and Figure 52 respectively.  

Level-three variance for the overall average treatment effect for the phase (shift in 

level). The box plot in Figure 50 below illustrates the distribution of the RMSE values for the 

level-three variance for the phase effect across the seven models. The smallest mean RMSE 

value was observed for the ARMA(1,1) model (M = 0.64, SD = 0.40), however the largest mean 

RMSE value was noted for the AR(1) model (M = 382.79, SD = 3098.68).  
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Figure 49. Box plot representing the relationship between the mean bias for the moving average 
parameter and the level of the moving average parameter. 
 

GLM models were run to further explore the variability; the model, including five-way 

interactions explained 94% of the total variability. However, no considerable effects were found, 

therefore no further exploration was warranted for this data.  

The data were trimmed to allow for further exploration of the RMSE values for the level-

three variance for the phase effect. The distribution of the trimmed data is displayed in Figure 51. 

GLM models were run with the trimmed data and the results are further explained in Appendix 

A. Overall, the GLM models (including two-way interactions) explained 99% of the variability 

and revealed one medium or larger effect: the interaction of the number of primary studies with 

the variances of the error terms (η
2= 0.06). This interaction was further investigated and the 
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relationship was represented with line graphs. The line graphs depicted the interaction of the 

number of primary studies and the variance of the error terms with the trimmed RMSE values 

values for the level-three variance for the shift in level. 

Further examination of the interaction with the RMSE values illustrated that for the less 

number of primary studies(10), the RMSE values tend to be greater than when the number of 

primary studies increased to 30, however the gap is even greater when the variances of the error 

terms is mostly at the upper levels.  

 

 

Figure 50. The distribution of the RMSE values for the phase effect for level-three variance 
across the seven models. 
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Figure 51. The distribution for the trimmed RMSE values for the level-three variance for the 
phase effect. 

 

Level-three variance for the overall average treatment effect for the interaction 

effect (shift in slopes). The box plot illustrating the distribution for the RMSE values for the 

level-three variance for the interaction effect is displayed below in Figure 52. The means appear 

to be comparable across five of the models (the AR[1] model and each of the four fit index 

selected models). However, the mean RMSE value for the ID model was 2.06 (SD = 22.42) and 

the RMSE was smallest for the ARMA model (M = 0.07, SD = 0.04). To further explore the 

variability in the RMSE values for the level-three variance for the interaction effect, GLM 

models were run. The model, including five-way interactions, explained 93% of the total 
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variability and none of the effects constituted a medium effect. Due to this, no further 

exploration was warranted for the original data. 

 

 

Figure 52. The distribution of the RMSE values for the level-three variance for the interaction 
effect (shift in slopes) across the seven models. 
 

The RMSE values were then trimmed for further analysis of the RMSE values as a 

function of the seven models. The distribution for the trimmed RMSE values is displayed in 

Figure 53 below. GLM models were run to further investigate the relationship of the RMSE 

values with the study’s design factors. The conclusions for the models were explained in 

Appendix A. 
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Figure 53. The distribution for the trimmed RMSE values for the level-three variance for the 
interaction effect. 
 

 Level-two variance for the average treatment effect for the phase (shift in level). The 

distribution for the level-two variance component for the phase effect is shown directly below in 

Figure 54. The means appear to be similar, with the type of model (η2 = .011), indicating little 

variability between the types of model.  The greatest mean for the RMSE was observed for the 

model selected by LRT (M = 295.32, SD = 1350.36), meanwhile the smallest mean RMSE value 

was noted for the AR(1) model (M = 0.40, SD = 0.21). To further examine the variability, GLM 

models, including 5-way interactions were run. No significant or medium effects were found, no 

further analyses are warranted.  
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The RMSE values were then trimmed for further analysis of the RMSE values as a 

function of the seven models. The distribution for the trimmed RMSE values is displayed in 

Figure 55. GLM models were run to further investigate the relationship of the RMSE values with 

the study’s design factors. The findings for the models are explained with greater detail in 

Appendix A. In summary, the model, including third order interactions, explained 95.9% of the 

variability. There were three medium or larger effects: number of participants (η2= 0.12), number 

of studies to be included in the meta-analysis (η
2= 0.22), the variance of the error terms (η

2= 

0.43). 

 

 

Figure 54. Box plot illustrating the distribution of the RMSE values for the level-two variance 
components for the phase effect across the seven models. 
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Figure 55. The box plot illustrating the distribution for the trimmed RMSE values for the level-
two phase effect. 
 

 Level-two variance for the overall average treatment effect for the interaction (shift 

in slopes). The distribution for the level-two variance components for the shifts in slopes is 

displayed in the box plot below (see Figure 56). The largest mean was observed for the model 

selected by the LRT (M = 12.77, SD = 54.84), conversely, the smallest mean was for the AR 

model (M = 0.07, SD = 0.04). The type of model (η2 = 0.017), indicating a menial amount of 

variability between the type of models. GLM models were run to further analyze the variability. 

The model, including five-way interactions explained 97% of the total variability. None of the 

effects met the criteria for a medium, therefore no further exploration was warranted.  
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Figure 56. Box plot illustrating the distribution of the RMSE values for the level-two variance 
components for the interaction effect across the seven models. 
 

The data were then trimmed to further investigate the variability in level-two variance for 

the interaction effect; the graph for the trimmed distribution is displayed below in Figure 57. The 

graph shows that the means are comparable across most of the models, with the ID model having 

a slightly larger mean. The greatest variability was also observed for the ID models, and againk 

similar variability was noticed for the remainder of the models. GLM models were then run to 

determine if there were any medium or larger effect for each of the design factors and 

combinations of these factors. The results are presented and explained in great detail in the 

Appendix A. 
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Figure 57. The distribution for the trimmed RMSE values for the level-two variance for the 
interaction effect.  
 

Level-one or Residual Variance. Figure 58 below displays the distribution of the RMSE 

values for the level-one variance across the seven models. The largest mean RMSE value was 

observed for the model selected by the AR model, M = 11.97, SD = 129.02, conversely, the 

smallest mean was for the ID model (M = 0.10, SD = 0.05). The type of model (η2 = 0.017), 

indicating a menial amount of variability between the type of models. GLM models were run to 

further analyze the variability. The model, including five-way interactions explained 97% of the 

total variability. None of the effects met the criteria for at least a medium effect; therefore no 

further exploration was warranted on the original data. 
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Figure 58. Box plot showing the distribution of the RMSE values for the level-one variance 
across the seven models. 
 

Due to the extreme variability observed in several points for the RMSE values for the 

level-one variance, the data were trimmed and six data points were removed. The resulting 

distribution of the trimmed RMSE values for the level-one variance is displayed below in Figure 

59. The figure displays that the mean RMSE values varied across the different types of models. 

The largest mean RMSE values (M = 0.36, SD = 0.29) for the level-one variance was observed 

for ARMA (1,1) model, while the smallest mean RMSE values (M = 0.10, SD = 0.06) was noted 

for the ID model. To further explore the variability of the trimmed RMSE values for the level-

one variance, GLM models were used. The findings are further explicated in the Appendix A.   

Overall, The resulting model included 3-way interactions and explained 98% of the total 

variability. The following medium effects were found: the series length or number of 

observations (η2 = 0.06), the interaction of the level of the autocorrelation parameter and the type 
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of model (η2 = 0.07 ), the interaction of the variances of the error terms and the type of model (η2 

= 0.11). 

 

 
 
Figure 59. Box plot showing the distribution of the trimmed RMSE values for the level-one 
variance across the seven models. 
 

 Autocorrelation Parameter.  The box plot below (see Figure 60 below) illustrates the 

distribution of the RMSE values for the autocorrelation parameter across the six models (the 

autocorrelation parameter was estimated to be 0 for the ID model). The plots indicated that the 

smallest mean for the RMSE values for the autocorrelation parameter is for the first-order 

autoregressive model (M = 0.05, SD = 0.02), while the largest mean for the RMSE values was 

observed for the moving average model (M = 0.33, SD = 0.24). To further explore the variability 
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in the RMSE values for the autocorrelation parameter, GLM models were run. The models, 

which included two-way interactions, explained 98% of the total variability. The model revealed 

that there was one effect that met the aforementioned criteria for a medium effect: the interaction 

of type of model and the level of the autocorrelation parameter (η2 = 0.28).  

  
 

 
Figure 60. Box plot showing the distribution for the RMSE values for the autocorrelation 
parameter across the six models.  
 

To further examine the significant effect, line graphs (see Figure 61 below) were created 

for the relationship of the RMSE values for the autocorrelation parameter and the interaction 

effect between the level of the autocorrelation parameter and type of model. The line graph 

indicated that RMSE values were similar for the models selected by three of the fit indices (AIC, 

AICC, and BIC) across the various levels of the autocorrelation parameter. For the models 

selected by the LRT, the RMSE values were slightly smaller, and smallest for the AR(1) model 
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across the various levels of the autocorrelation parameter. The largest RMSE values were 

observed for the ARMA(1,1) model with a mean of 0.15 (SD = 0.08) for ρ = 0.4, mean of 0.30 

(SD = 0.13) for ρ = 0.2, and finally, mean of 0.75 (SD = 0.07) for ρ = 0.0. 

 

 
Figure 61. Line graph depicting the relationship between the mean RMSE values for the 
autocorrelation parameter and the interaction effect of type of model and the level of the 
autocorrelation parameter. 
 
  

First-Order Autoregressive Moving Average Parameter. The box plot displayed 

below in Figure 62 depicts the distribution of the RMSE values for the moving average 

parameter across the five models (the moving average parameter was estimated as zero for the 

ID and the AR models). The smallest mean for the RMSE values were observed for the LRT 

models (M = 0.16, SD = 0.13) and the largest mean for the RMSE values was for the 

ARMA(1,1) model (M = 0.21, SD = 0.14). GLM models were run to further explore the 

variability of the RMSE values, and their relationship with the combination of design factors. 

Level of Autocorrelation



www.manaraa.com

147 

 

The model, including two-way interactions explained 97% of the total variability, and revealed 

that there were two significant (medium or larger) effects: the level of the autocorrelation 

parameter (η2 = 0.26) and the interaction between the level of the moving average parameter and 

the type of model (η2 = 0.45). Line graphs were then created to further examine the relationship 

of these effects with the RMSE values for the moving average parameter. 

 

 

 
Figure 62. Box plot illustrating the distribution of the RMSE values for the moving average 
parameter across the five models. 

 
 

Line graphs were then created to explore the association of the mean for the RMSE 

values and these effects. Figure 63 below depicts the relationship between the mean RMSE 

values and the interaction between the level of the moving average parameter and the type of 

model. The graph shows that for the models selected by the various fit indices that the mean 
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RMSE values increase as the level of the moving average parameter increase. However, the 

inverse relationship was observed for the ARMA(1,1) model, the mean RMSE values increased 

as the level of the moving average decreased. Specifically, the mean RMSE value was smallest 

for θ = 0.4 (M = 0.07, SD = 0.04) and largest for θ = 0.0 (M = 0.30, SD = 0.11). 

 
 

 
Figure 63. Line graphs for the association of the mean RMSE values for the moving average 
parameter and the interaction between level of the moving average parameter and the type of 
model. 
 
Confidence Interval Coverage  
 
 The confidence interval coverage will be explored in the next section for all of the 

variance components. These components included the level-three variance for both the phase 

effect (shift in level) and the interaction effect (shift in slopes), the level-two variance for both 

the both the phase effect (shift in level) and the interaction effect (shift in slopes), the level-one 

or residual variance, the autocorrelation parameter, and finally, the moving average parameter. 
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Figure 64. Box plots for the distribution of the coverage for the level-three variance for the phase 
effect (shift in levels) across the seven models. 
 
 

Level-three variance for the overall average treatment effect for the phase (shift in 

level).  Figure 64 above shows the distribution for the confidence interval coverage for the level-

three variance for the phase effect across the seven models. The means for the confidence 

interval coverage appear to be comparable (η
2 = 0.007), further indicating the lack of variability 

across the seven models. The largest mean was for the model selected by LRT (M = 0.9556, SD 

= 0.011) and the ID model had the smallest mean interval coverage (M = 0.9528, SD = 0.014).  

 
To further examine the variability in the confidence interval coverage, GLM models were 

run. The model, including two-way interactions, explained 95% of the total variability, and 

indicated that two combinations of design factors were medium effects: the number of primary 
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studies included in the meta-analysis (η
2 = .07) and the interaction effect between the number of 

participants and the variances of the error terms (η
2 = .09).  

Box plots (see Figure 65 and 66) were then created to explore the relationship with each 

of these medium effects with the outcome of interest and the confidence interval coverage for the 

level-three variance for the shift in level. First, in Figure 65, the graph illustrates the relationship 

between the mean interval coverage and the number of primary studies to be included in the 

meta-analysis, revealing that as the number of primary studies to be included in the meta-

analysis increased from 10 (M = .95, SD = 0.013) to 30 (M = 0.96, SD = 0.008), the mean 

confidence interval coverage also increased. 

 
Figure 65. Box plot depicting the relationship between the mean confidence interval coverage 
for level-three variance for the phase effect and the number of primary studies to be included in 
the meta-analysis. 
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The association of the interval coverage and the interaction of the variances of the error 

terms and the number of participants in each study was then illustrated in Figure 66 below. The 

graph indicates that the effect of the number of participants (from 4 to 8) on the mean interval 

coverage is dependent upon the variances of the error terms. Specifically, when most variances 

of the error terms are at the upper levels for the shift in level then there is only a slight increase 

in mean as the number of participants shift from 4 (M = 0.96, SD = 0.004) to 8(M = 0.96, SD = 

0.003). However, there is a greater increase in the mean interval coverage when the most of the 

variances of the errors are at level-one for the phase effect as the number of participants shift 

from 4 (M = 0.94, SD = 0.010) to 8 (M = 0.96, SD = 0.006).  

 
 

 
Figure 66. Line graph illustrating the relationship between the mean confidence interval 
coverage for the level-three variance for the phase effect and the interaction between the 
variances of the error terms and the number of participants in study.  
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Level-three variance for the overall average treatment effect for the interaction 

effect (shift in slopes). The distribution for the confidence interval coverage for the level-three 

variance for the interaction effect is shown in Figure 67 below. The figure shows that the 

variability across the models are minimum (η
2 = .014). The largest mean interval coverage was 

for the model selected by the BIC fit index (M = 0.952, SD = 0.020); the smallest mean interval 

coverage was for the ID model (M = 0.944, SD = 0.028). To further explore the variability in the 

mean interval coverage, GLM models were run.  

 

 

Figure 67. Box plot showing the distribution of the confidence interval coverage for the level-
three variance for the interaction effect (shift in slopes) across the seven models. 
 

The results of the model including two-way interactions, explained 95% of the total 

variability, reported two effects that met the aforementioned criteria for being described as a 
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medium effect. One of the effects was the interaction effect between the series length and the 

variances of the error terms (η2 = .11). The other medium effect was the number of participants 

in the study (η2 = .14). Line graphs were then constructed to further illustrate the relationship 

between the mean interval coverage and these effects. The graph below (see Figure 68) 

represents the relationship between the mean interval coverage and the interaction between the 

series length and the variances of the error terms. Furthermore, the lines illustrate that the effect 

or the impact of the series length on the mean confidence interval coverage depends on the 

variances of the error terms. Specifically, the increase in the mean confidence interval coverage 

is greater when the series length is increases from 10 (M = 0.92, SD = 0.025) to 20 (M = 0.96, SD 

= 0.007) when most of the variance is at level-one.  Conversely, when most of the variance is at 

the upper levels, the effect of the series length increasing from 10 (M = 0.954, SD = 0.010) to 20 

(M = 0.963, SD = 0.005) on the mean interval coverage is minimal.         

 

Figure 68. Line graphs depicting the relationship between the mean interval coverage for the 
level-three variance of the interaction effect (shift in slopes) and the interaction of the variances 
of the error terms and the series length. 

Error Variances



www.manaraa.com

154 

 

 

Figure 69 illustrates the relationship of the outcome of interest with the second medium 

effect, specifically, the relationship between the mean confidence interval coverage for the level-

three variance for the interaction effect and the number of participants included in a primary 

study. The graph reveals that as the number of participants increased from 4 (M = 0.94, SD = 

0.025) to 8 (M = 0.96, SD = 0.011), then the mean confidence interval width also increases.  

 

 

Figure 69. Box plot depicting the association between the mean interval coverage for the level-
three variance for the interaction effect (shift in slopes) and the number of participants in a 
particular study.  
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 Level-two variance for the average treatment effect for the phase (shift in level). The 

distribution of the confidence interval coverage for the level-two variance for the phase effect 

(shift in level) in shown in Figure 70 below.  

 

Figure 70. Box plots showing the distribution of the confidence interval coverage for the level-
two phase effect (shift in level) across the seven models. 
 

The box plot above illustrates the distribution of the confidence interval coverage for the 

level-two phase effect across the seven models. The smallest mean interval coverage was 

observed for the ID model (M = 0.71, SD = 0.25), conversely, the largest mean interval coverage 

was seen for the first order autoregressive moving average model (M = 0.94, SD = 0.19). To 

further examine the variability in the interval coverage, GLM models were run.  
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The results of the model, including three-way interactions, explained 99% of the total 

variability and resulted in the following factors being medium effects: the interaction between 

type of model and the variances of the error terms (η2  = .08) and the interaction between the type 

of model and the level of the autocorrelation parameter (η2  = .22).   

 

Figure 71. Line graphs illustrating the mean interval coverage for the level-two variance for the 
phase effect as a function of the interaction between the variances of the error terms and the type 
of model. 
 

Line graphs were then created to further analyze the relationship of the mean interval 

coverage with these effects. The graph above (see Figure 71) displays that the association of the 

mean interval coverage with type of model depends on the variances of the error terms, 

specifically, the graph shows that the for the ID model when the most of the variance is at level-

one, the mean interval width is much lower (M = 0.60, SD = 0.28) than for the other models (M = 

0.93, SD = 0.017). However, this difference is much smaller for the ID model (M = 0.83, SD = 
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0.13) and the other models (M = 0.957, SD = 0.004) when most of the variance is at the upper 

levels.  

Furthermore, the line graph (see Figure 72) below depicts the association of the level-two 

variance with the phase effect and the interaction between the level of the autocorrelation 

parameter and type of model. The graph below illustrates that for the ID model the effect on the 

mean interval coverage depends on the level of the autocorrelation parameter. Moreover, the 

figure illustrates that as the autocorrelation parameter is decreased from 0.4 (M = 0.52, SD = 

0.26) to 0.2 (M = 0.79, SD = 0.12) to 0.0 (M = 0.95, SD = 0.01), then the mean interval coverage 

increases for the ID model. The mean interval coverage was near the nominal value of 0.95 for 

the six remaining models. 

 

Figure 72. Line graphs representing the association between the mean interval coverage and the 
interaction between the level of the autocorrelation parameter and the type of model. 
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Level-two variance for the overall average treatment effect for the interaction (shift 

in slopes). The box plots illustrating the distribution of the confidence interval coverage for the 

level-two variance for the interaction effect (shift in slopes) is displayed in the Figure 73 below. 

The interval coverage seemed to be comparable across all models, with the exception of the ID 

model. The mean interval coverage for the ID model was 0.72 (SD = 0.24) which was lower than 

the mean interval coverage for the remainder of the models (M = 0.94, SD = 0.03). To further 

explore the variability of the interval coverage, GLM models were run. The results of the model 

(including three-way interactions) explained 99% of the total variability. The model resulted in 

one medium effect, the interaction between the level of the autocorrelation parameter and the 

type of model (η2 = .22).                     

 
 
Figure 73. Box plots depicting the distribution of the confidence interval coverage for the level-
two variance for the interaction effect (shift in slopes) across the seven models.  
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The graph (see Figure 74) was then constructed to further analyze the association 

between the mean interval coverage and the interaction between the level of the autocorrelation 

parameter and the type of model. The figure below represents that for the ID model, the effect on 

the mean interval coverage rely on the level of the autocorrelation parameter. Specifically, for 

the ID model the mean interval coverage is much lower when the autocorrelation parameter is 

0.4 (M = 0.53, SD = 0.25) and then the mean interval coverage approaches the nominal value of 

0.95 and the autocorrelation parameter approaches 0. The remaining six models all have interval 

coverage that was close to the nominal value of 0.95.  

 

 

Figure 74. Line graph illustrating the relationship between the mean interval coverage and the 
interaction effect of the level of the autocorrelation parameter and the type of model.  
 
 Level-one or Residual Variance. The confidence interval coverage for the level-one 

variance or the residual variance was then analyzed. The smallest interval coverage (M = 0.56, 

SD = 0.32) was observed for the ID model, meanwhile the largest mean interval coverage was 
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noted for the first order autoregressive moving average model, ARMA(1,1) (M = 0.70, SD = 

0.27).  The variability in the mean interval coverage was then explored using GLM models. 

 

 

Figure 75. The distribution of the confidence interval coverage for the level-one variance across 
the seven models. 

 

The models, including three-way interactions revealed that there were three medium 

effects: the number of primary studies to be included in the meta-analysis (η2 = 0.06), the 

interaction of the series length and the type of model (η2 = 0.07), and lastly, the level of the 

autocorrelation parameter (η2 = 0.53). Box plots were then created to further examine the 

association of these effects with the mean interval coverage for the level-one variance (residual 

variance). 
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The graph below (see Figure 76) shows that as the number of primary studies to be 

included in the meta-analysis increased from 10 (M = 0.74, SD = 0.23) to 30 (M = 0.59, SD = 

0.34), then the mean interval coverage for the level-one variance decreased.  

  
 

 

 

Figure 76. Box plots illustrating the relationship between the mean interval coverage and the 
number of primary studies to be included in the meta-analysis. 
 

The graph in Figure 77 below displays the association of the mean interval coverage for 

the level-one variance with the interaction of the type of model and the series length. 

Specifically, the graph illustrates that the effect of the series length on the mean interval 
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coverage depends on the type of model. The mean interval width is decreased for most of the 

models (AR, ARMA, LRT, AIC, AICC, BIC) when the series length is increased from 10 to 30. 

However, the opposite is observed for the ID model: the mean interval coverage is increased 

when the series length is increased from 10 (M = 0.43, SD = 0.35) to 30 (M = 0.69, SD = 0.21). 

 

Figure 77.  Line graphs depicting the relationship between mean interval coverage for the 
residual variance and the interaction of series length and the type of model. 
 

Finally, the graph of the level of the autocorrelation parameter and the mean interval 

coverage is displayed below. The graph (see Figure 78) depicts that the mean interval coverage 

for the residual variance decreased as the level of the autocorrelation parameter increased from 

0.0 (M = 0.91, SD = 0.06) to 0.2 (M = 0.81, SD = 0.14) to 0.4 (M = 0.40, SD = 0.29). The amount 

of variance for the interval coverage for the residual variance also increased as the level of 

autocorrelation increased. 
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Figure 78. Box plots depicting the relationship between the mean interval coverage for the 
residual variance and the level of the autocorrelation parameter. 
 

Autocorrelation parameter. Box plots (see Figure 79) illustrating the distribution of the 

confidence interval coverage for the autocorrelation parameter across the six models (the 

autocorrelation parameter was estimated as 0 for the ID model).. The smallest mean interval 

coverage was noted for the model selected by the AIC (M = 0.86, SD = 0.06) and the largest 

mean interval coverage was for the AR(1) model (M = 0.95, SD = 0.005). The variability was 

further examined with the use of GLM models. The model, including three-way interactions 

explained 96% of the total variability. The model also revealed one significant effect: the 

interaction of the level of the autocorrelation parameter and the type of model (η2 = 0.32). Line 
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graphs were then created to further examine the association of the mean interval coverage with 

this effect. 

 

 

Figure 79. Box plot displaying distribution of the confidence interval coverage for the 
autocorrelation parameter across the six models. 
 

The association between mean interval coverage for the autocorrelation parameter and 

the interaction of the level of the autocorrelation parameter and the type of model is depicted in 

the line graph below (see Figure 80). The graph indicates that the relationship across the models 

selected by the fit indices are comparable, that the mean interval coverage is greatest when ρ = 

0.0 and least when ρ = 0.2. The last model, the ARMA (1,1) model, illustrates that the mean 
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interval coverage increases as the level of the autocorrelation parameter increases from 0.0 (M = 

0.60, SD = 0.12) to 0.2 (M = 0.86 ,SD = 0.07) to 0.4 (M = 0.92, SD = 0.04).   

 

 

Figure 80. Line graph depicting the association between mean interval coverage for the 
autocorrelation parameter and the interaction of the level of autocorrelation parameter and the 
type of model. 
 

First-Order Autoregressive Moving Average Parameter. The mean confidence 

interval coverage was then examined for the moving average parameter across the five models 

(the parameter was estimated to be zero for both the ID and the AR models) in Figure 81. The 

largest mean interval coverage was observed for the models selected by LRT (M = 0.59, SD = 

0.45), conversely, the smallest mean interval coverage was noted for the ARMA(1,1) model (M 

= 0.54, SD = 0.41). The variability was further explored using GLM models. The model, 

including two-way interactions, explained over 99% of the total variability, and revealed two 
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medium effects: the level of the autocorrelation parameter (η2 = 0.18) and the interaction 

between the level of the moving average parameter and the type of model (η2 = 0.54). 

 

Figure 81. Box plots illustrating the distribution of the confidence interval coverage for the 
moving average parameter across the five models. 

 
 

Graphs were then constructed to analyze the means of the interval coverage for the 

moving average parameter across both of the significant effects. First, the graph (see Figure 82) 

shows that the mean coverage for the moving average parameter decreases as the level of 

autocorrelation increases from 0.0 (M = 0.91, SD = 0.08) to 0.2 (M = 0.49, SD = 0.40) to 0.4 (M 

= 0.48, SD = 0.41). The variability is increased greatly as the autocorrelation increases for 0.0 to 

0.2 but remains the approximately the same as the autocorrelation is further increased from 0.2 to 

0.4. 
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Figure 82. Box plots illustrating the mean interval coverage for the moving average parameter 
across the levels of the autocorrelation parameter.  
 

Additionally, the association of the mean interval coverage for the moving average 

parameter and the interaction of the level of the moving average parameter and the type of model 

are depicted in the line graph below (see Figure 83). Analyzing the graph below, there is little 

difference in the mean coverage for the moving average parameter across all of the five models 

as the level of the moving average parameter is increased from 0.2 to 0.4. Additionally, the mean 

coverage is really low for the models selected by the fit indices (this again can be attributed to 

the few number of times that the fit indices correctly identified the first order autoregressive 

moving average model). However, for the ARMA (1,1) model, the mean coverage was high 
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when the moving average parameter was at least 0.2 (M = 0.89, SD = 0.06). Lastly, when the 

moving average parameter was 0 (ID model), then the mean coverage was lowest for the ARMA 

(1,1) model (M = 0.30, SD = 0.36) and highest for the LRT selected models (M = 0.96, SD = 

0.02).   

 
 

 

Figure 83. Line graphs depicting the association of the mean interval coverage for the moving 
average parameter and the interaction of the type of model and the level of the moving average 
parameter. 
 

Confidence Interval Width  

 The interval width for the four level-three and level-two variance components were so 

large, that they provided no valuable information. Specifically, the smallest mean interval width 

estimates for the level-three variance components for the phase effect, shift in level, was for the 

ID model, 7.08 X 10283 and largest for the model selected by the BIC, 4.76 X 10284. For the level-

three variance components for the level-three interaction effect (shifts in slopes), the smallest 

Level of Moving Average



www.manaraa.com

169 

 

mean interval width was observed for the AR model, 5.83 X 10283 and smallest mean interval 

width was noted for the model selected by the AICC, 4.76 X 10284. Similar patterns were 

observed for the level-two variance components, for the phase effect, the smallest mean interval 

width was seen for the ID model, 6.89 X 10283and the largest mean interval width was for the 

model selected by LRT, 1.97 X 10284 . Finally, when analyzing the means for the level-two 

variance for the interaction effect, the shift in slopes, and the smallest mean interval width was 

noted again for the ID model, 1.17 X 10282 and the largest mean interval width was observed for 

the ARMA model, 1.53 X 10284.  

 Level-one or Residual Variance. The distribution for the confidence interval width for 

the level-one variance for two of the models (for ID and for the AR model); the remaining 

models had widths that were too large to gain any meaningful information for the level-one 

variance (residual variance). Therefore, the other models were removed from the picture to allow 

for an accurate examination of the ID and the AR model. 

The mean interval width for the ID model (M = 0.17, SD = 0.07) was smaller than for the 

AR model (M = 0.34, SD = 0.25) for the level-one variance.  GLM models were run to further 

examine the variability in the interval width for the residual variance across the design factors 

and the combination of these design factors.  The model, including three-way interactions, 

explained 95% of the total variability, and revealed that there were four medium effects: the 

number of participants per study (η2 = 0.06), the interaction of the autocorrelation parameter and 

the type of model (η2 = 0.08), the number of primary studies to be included in the meta-analysis 

(η2 = 0.14), and the series length or number of observations (η2 = 0.15). Graphs were then 

created to further examine these effects and their relationship with the outcome of interest (mean 

interval width).  
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Figure 84. Box plot illustrating the distribution for the confidence interval width for the level-
one residual variance across the seven models. 

 

 Figure 85 below displays the relationship between the mean interval width for the level-

one variance and the number of participants in a study. The graph shows that as the number of 

participants increased in a study from 4 (M = 0.31, SD = 0.24) to 8 (M=0.21, SD = 0.13), then the 

mean interval width for the level-one variance also increased. In terms of the variability, the box 

plot also revealed that the variance tended to tended to decrease as the number of participants to 

be included in each study increased from 4 to 8. 

ID AR 
Type of Model 
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Figure 85. Box plots illustrating the association of the mean interval width for the level-one 
variance and the number of participants in a particular study. 
 

Next, the relationship between the mean interval width and the interaction of the level of 

the autocorrelation parameter and the type of model is displayed in Figure 86 below. The graph 

shows that the effect of the level of the autocorrelation parameter on the mean interval width 

depends on the type of model. Specifically, when the type of model is ID, the level of 

autocorrelation has very little effect on the mean interval width for the level-one variance. 

However, for the AR (1) model, the mean confidence interval width for the level-one variance 

increases as the level of the autocorrelation parameter increases from the model not having any 

autocorrelation to the highest level of autocorrelation. 
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Figure 86. Line graph displaying the relationship of the mean interval width for the level-one 
variance and the interaction of the level of the autocorrelation parameter and the type of model.  
 

Additionally, the association of the mean interval width for the residual variance with the 

number of studies to be included in the meta-analysis was further analyzed using graphs (see 

Figure 87 below). The graph indicates that as the number of primary studies to be included in the 

meta-analysis increased from 10 (M = 0.33, SD = 0.24) to 30 (M = 0.18, SD = 0.11), then the 

mean interval width for the residual variance also decreased. The variability also tended to 

decrease as the number of primary studies increased from 10 to 30.  

Lastly, the association of the mean interval width for the residual variance and the 

number of observations or the series length was analyzed. The graph in Figure 88 below 

illustrated that as the series length increased from 10 (M = 0.34, SD = 0.18) to 20 (M = 0.18, SD 

= 0.08), then the mean interval width for the residual variance decreased. The descriptive 

statistics also revealed that the variability tended to decrease with the increased series length. 

 

Level of Autocorrelation



www.manaraa.com

173 

 

 

Figure 87. Box plots depicting the relationship between the mean interval width for the level-
one variance and the number of primary studies included in the meta-analysis. 
 

 

Figure 88. Box plot illustrating the relationship between the mean interval width for the 
level-one variance and the series length. 
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`  

Figure 89. The box plot representing the distribution for the interval width for the 
autocorrelation parameter across the six models. 
  

Autocorrelation Parameter. The distribution for the interval width for the 

autocorrelation parameter is shown above in Figure 89. The box plot shows that the means for 

the interval width are different among the models, the ARMA (1, 1) model has the largest mean 

interval width (M = 0.96, SD = 0.59) and the model selected by the LRT has the smallest mean 

interval width (M = 0.16, SD = 0.10). To further explore the variability in the mean interval 

width, GLM models were run across the design factors.  

The model, including two-way interactions, explained 98% of the total variability and 

resulted in one medium effect, the interaction of autocorrelation parameter and the type of model 

AR ARMA LRT AIC AICC BIC 

Type of Models 
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(η2 = 0.31). Line graphs were then constructed to further examine the relationship of the mean 

interval width and the interaction effect. The line graph below displays that the effect of the level 

of the autocorrelation parameter depend on the type of model. Specifically, for the first order 

autoregressive moving average model, the mean interval width for the autocorrelation parameter 

is much greater than for the remainder of the models.  

 

Figure 90. Line graph depicting the estimated mean interval width of the autocorrelation 
parameter as a function of the interaction between the level of the autocorrelation parameter 
and the type of model. 
 

Moreover, the mean interval width decreases for the ARMA (1,1) model when the level 

of the autocorrelation parameter increases from 0.0 (M = 1.92, SD = 0.39) to 2.0 (M = 0.89, SD = 

0.31) to 4.0 (M = 0.54. SD = 0.24). For the autocorrelation model, the mean interval width 

slightly increases as the level of the autocorrelation parameter increases from 0.0 (M= 0.17, SD = 

0.08) to 4.0 (M = 0.20, SD = 0.10). When looking at the fit-selected models, overall the mean 

interval width is comparable, resulting in mean interval widths of less than 0.10 when the level 

Level of Autocorrelation
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of the autocorrelation parameter was 0.0 and increased to approximately 0.24 when the 

autocorrelation parameter increased to 0.2 or 0.4 

 First-Order Autoregressive Moving Average Parameter. The distribution for the 

mean confidence interval width for the moving average parameter across the five models are 

displayed in Figure 89 below. The box plots illustrate that the means for the four models selected 

by fit indices were comparable with the largest mean for the model selected by the AIC (M = 

0.04, SD = 0.02) and smallest for the model selected by the LRT (M = 0.01, SD = 0.01). 

However, the first-order autoregressive moving average model was the greatest among the five 

models with a mean of 8.30 (SD = 20.00). To further examine the variability, GLM models were 

run. 

 

Figure 91. Box plots illustrating the distribution of the confidence interval width estimates for 
the moving average parameter across the five models. 
 

ARMA LRT AIC AICC BIC 

Type of Models 
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The resulting model, including five-way interactions, explained 96% of the total 

variability and resulted in one medium effect, the interaction of the level of the autocorrelation 

parameter and type of model (η2 = 0.28). Line graphs were then created to further examine the 

association of the mean interval width for the moving average parameter with this effect.  

 

Figure 92. Line graphs illustrating the association of mean interval width for the moving 
parameter and the interaction of the level of the autocorrelation parameter and the type of model. 
 

The line graph above (see Figure 92) demonstrates that the models selected by the fit 

indices had comparable mean interval widths for the moving average parameter across all levels 

of the autocorrelation parameter (this should be interpreted with caution again due to the few 

number of times that these models correctly identified the ARMA model). However, for the 

ARMA(1,1) model, there were great differences in the mean interval widths as the level of the 

autocorrelation parameter increased from 0.0 (M = 33.22, SD = 27.18) to 0.4 (M = 0.25, SD = 

0.13). 

Level of Autocorrelation
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The distribution for the proportion of times that the ARMA (1,1) model was correctly 

identified was examined. The results revealed that none of the fit indices correctly selected the 

model more than 20% of the times. The results also indicated that the greatest mean proportion 

of times was for the AIC, meanwhile the LRT had the smallest proportion of correct 

identification for this model. The association of the mean proportion of times that the ARMA 

model was correctly identified by the fit indices and the interaction effect of the type of fit index 

and the number of primary studies to be included in the meta-analysis was then explored. The 

results indicated that the effect of the number of primary studies on the mean proportion of 

correct identification depended on the type of model that was used. Concretely, for the BIC fit 

index, the greatest decrease in the correct identification was seen when the number of primary 

studies increased. However, there was hardly any difference for the models selected by the LRT 

in the mean proportion of correct selection when the number of primary studies increased. 
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Table 6 
Summary of Results for Correct Model Selection 

ID AR(1) ARMA(1,1) 
M = 0.74;  
Range: [0.82, 0.91].  

 
The models selected by the BIC fit 
index showed the greatest 
improvement when the number of 
primary studies included in meta-
analysis increased. 

M = 0.84; Range: [0.52, 0.95].  
 
The proportion of times that the AR 
(1) model was correctly identified 
increased with increased series 
length and the number of primary 
studies to be included in the meta-
analysis increased.  

 
The LRT fit index greatly 
outperformed the other fit indices 
in terms of correct identification for 
the simpler models, ID and AR(1). 

M = 0.14; Range: [0.05, 0.24].  
 

None of the fit indices correctly 
selected the model more than 25% 
of the time; the greatest proportion 
of times was found for the AIC fit 
index, while the least was for the 
LRT.  

 
For the BIC fit index, there was an 
increase in correct identification 
when the number of studies to be 
included in the meta-analysis 
increased. 
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Table 7 
Summary of Results for the Fixed Effects 

Parameter 
Estimate Bias RMSE 

Interval 
Coverage Interval Width Type I Error Power 

Shift in Level 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

M = 
0.00001;Range: [-
0.0147, -0.0140].  
 
No medium or 
larger effects were 
found. 

M =  0.32 
Range: [0.15, 
0.55] 
 
Tended to 
decrease with 
increased 
number of 
primary studies 
and as most of 
the variance 
shifted to most 
of the variance at 
level-one. 

M = 0.95; 
Range: [0.94, 

0.97].  
 

Tended to 
approach the 
nominal value of 
0.95 across all 
design factors. 

M = 1.52; 
Range: [0.60, 

22.17].  
 

Tended to 
decrease with 
increased level-
three sample size 
and most of the 
variance at level- 
one.  
 
For the 
ARMA(1,1) 
model, the width 
becomes smaller 
as the level of 
autocorrelation 
parameter 
increased. 

M = 0.05; 
Range: [0.04, 
0.06].  
 
Approached the 
target value 
across the 
models (M = 
0.05) for all of 
the combinations 
of design factors. 

M = 0.98; 
Range: [0.89, 
1.0].  
Mean Power 
estimates were 
comparable 
across the 
models (M = 
0.98).  
 
When most of 
the variance is at 
the upper levels, 
mean power 
estimates 
increase with an 
increase in level-
three sample 
size. 
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Table 7 (continued) 
Summary of Results for the Fixed Effects 

Parameter 
Estimate Bias RMSE 

Interval 
Coverage Interval Width Type I Error Power 

 
Shift in Slope 

 
M = 8.304X10-6; 
Range: [-0.006, 
0.006].  

No medium or 
larger effects were 

found. 

 
M =  0.10; 
Range: [0.04, 
0.19]. 
 
Tended to 
decrease with 
increased 
number of 
primary studies 
and as most of 
the variance 
shifted to most 
of the variance at 
level 1. 

 
M = 0.95; 
Range: [0.94, 
0.96].  
 
Tended to 
approach the 
nominal value of 
0.95 across all 
design factors. 

 
M = 0.49; 
Range: [0.18, 
8.38]. 
 
Tended to 
decrease with 
increased level-
three sample size 
and most of the 
variance at level-
one.  
For the 
ARMA(1,1) 
model, the width 
becomes smaller 
as the level of 
autocorrelation 
parameter 
increased. 

 
M = 0.05; 

Range: [0.04, 
0.06].  

 
The mean type I 
error approached 
the target value 

across the 
models (M = 

0.05) for all of 
the combinations 
of design factors. 

 
M = 0.53; 
Range: [0.15, 
0.99].  
 
The mean power 
estimate (M = 
0.53) was 
approximately 
equivalent across 
the models.  
 
Tended to 
increase as the 
number of 
primary studies 
increased and 
most of the 
variance is at 
level-one. 
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Table 8 
Summary of Results for Variance Components 

 Relative Bias RMSE Interval Coverage Interval Width 

Level-three     

Shift in Level M = 2.21, Range: 
[-0.023, 228.76]   
 
No medium or 
larger effects 
were found. 

M = 101.87, 
Range:  [0.172, 
6183.13].  
 
No medium or 
larger effects 
were found. 

M = 0.96, 
Range: [0.91, 
0.97].  
 
Tended to 
overcover 
when most of 
the variance is 
at upper levels, 
but approached 
nominal value 
with increased 
level-three 
sample size.   
 
The impact of 
the level-two 
sample size 
was minimal 
when most of 
the variance is 
at the upper 
levels. 
 

M = 
3.72x10284, 
Range: [0.8616 
to 4.03x10286]. 
 
No medium or 
larger effects 
were found. 
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Table 8 (Continued) 
Summary of Results for Variance Components 

 Relative Bias RMSE Interval Coverage Interval Width 

Shift in Slope M = 3.23, Range: 
[-0.020, 368.73].  
No medium or 
larger effects 
were discovered. 

M = 9.243, 
Range:[0.0157, 
400.754]  
 
No medium or 
larger effects 
were found. 

M = 0.95, 
Range: [0.85, 
0.98].  
 
Tended to 
overcover, 
however this 
was magnified 
in the cases 
where the most 
of the variances 
was at the 
upper levels 
and series 
length was 
long. 

M = 
1.68x10284, 
Range:[0.0755, 
4.03x10286].  
 
No medium or 
larger effects 
were found. 
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Table 8 (Continued) 
Summary of Results for Variance Components 
 Relative Bias RMSE Interval Coverage Interval Width 
Level-two     

Shift in Level M = 3.61, Range: 
[-0.03, 258.29]. 
 
 No medium or 
larger effects 
were found. 

M = 211.98, 
Range: [0.12, 
14034.3].  
 
No medium or 
larger effects 
were found. 

M = 0.91, 
Range: [0.02, 
0.97].  
 
The coverage 
was close to 0 
for the ID 
model for some 
instances when 
there was at 
least a 
moderate 
amount of 
autocorrelation.  
 
The level of 
autocorrelation 
did not have as 
great of an 
impact on the 
other models. 

M = 
1.64X10284, 
Range:[0.5204, 
1.24x10286] 
 
No medium or 
larger effects 
were found. 
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Table 8 (Continued) 
Summary of Results for Variance Components 

 Relative Bias RMSE Interval Coverage Interval Width 

Shift in Slope M = 4.87, Range: 
[-0.08, 419.24].  
 
No medium or 
larger effects 
were found. 

M = 
9.24,Range: 
[0.0157, 
400.75]. 
 
No medium 
or larger 
effects were 
found. 

M = 0.91, Range: 
[0.05, 0.97].  
 
The coverage was 
very low, close to 
0, for the ID model 
when the level of 
autocorrelation 
was the greatest.  

M = 
5.68X10283; 
Range: [0.03, 
9.34x10285].  
 
No medium or 
larger effects 
were found. 
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Table 8 (Continued) 
Summary of Results for Variance Components 

 Bias RMSE Interval Coverage  Interval Width 
Level-1     
Residual 
Variance 

M = 0.0109, Range: [-
0.204, 3.23].  
 
Tended to be 
overestimated for all 
of the models except 
for the ID model 
(underestimated).  
 
As the level of the 
autocorrelation 
increased, then the 
bias tended to increase 
for all models with the 
exception of the 
ARMA(1,1) model. 
 
For the ARMA(1,1) 
model, the level-one 
variance estimate 
tended to be most bias 
when there was no 
correlation in level-
one.  

M = 0.22 Range 
[0.02, 1.19]  
 
The RMSE values 
decreased with an 
increase in the 
level-one sample 
size and total 
variance.  
 
The RMSE values 
tended to increase 
for the simpler 
models with 
increased 
autocorrelation. 

M = 0.66 Range 
[0.00, 0.96].  
 
Tended to 
undercover, and this 
was magnified to 
even lower coverage 
with increased level-
three sample size 
and level of 
autocorrelation.  
 
Interval coverage 
was improved for 
longer series length 
for only the ID 
model. 

M = 9.86x10282; 
Range: [0.084, 
1.69x10284].  
 
Widths decreased or 
became more narrow 
as the sample size for 
each level increased. 
For the AR(1) model, 
the interval widths 
decreased with 
increased level of 
autocorrelation. 
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Table 8 (Continued) 
Summary of Results for Variance Components 

 Bias RMSE Interval Coverage  Interval Width 

Autocorrelation 
parameter 

M = -0.007, Range: 
[-0.2591, 0.1633]. 
 
Tended to be 
minimal when most 
of the variance was 
at the upper levels. 
 
Tended to be 
underestimated by 
all of the models 
when most of the 
variance was at 
level. This was 
magnified for the 
ARMA(1,1) model. 

 
 

M = -0.17, Range: 
[0.02, 0.84].  
 
The level of 
autocorrelation did 
not impact the 
AR(1) model and 
the LRT model.  
 
However, the 
RMSE value 
tended to 
decreased with 
increased level of 
autocorrelation. 

M = 0.89, Range: 
[0.42, 0.96].  
 
For the AR(1) 
model, coverage 
approached 
nominal value;  
 
For the fit-selected 
models, tended to 
approach nominal 
value when there 
was no 
autocorrelation;  
 
For the ARMA 
(1,1) model, 
approached 
nominal value with 
increased level of 
autocorrelation. 

M = 0.32; Range: 
[0.008, 2.52]. 
 
For the correctly 
specified AR(1) 
model, the interval 
widths were not 
impacted across the 
design factors.  
 
For the fit selected 
models, the widths 
tended to get wider 
for increased level 
of autocorrelation.  
 
For the 
ARMA(1,1) model, 
the widths were 
narrowest for the 
highest levels of 
autocorrelation. 
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CHAPTER FIVE: DISCUSSION 
 
 

This chapter outlines a summary of the study and results, along with a discussion of the findings, 

limitations of the study, and implications for future research. 

Summary of the study 

Purpose 

The purpose of the study was two-fold: 1) to determine the extent to which the various fit 

indices can correctly identify the level-one covariance structure; and 2) to investigate the effect 

of various forms of misspecification of the level-one error structure when using a three-level 

meta-analytic single-case model.  

Research Questions 

1. To what extent do fit indices (log likelihood ratio test, AIC, AIC corrected, BIC) 

correctly identify level-one covariance structure when using a three-level meta-analytic 

single-case model? 

2.  To what extent are the fixed effect parameter estimates from a three-level meta-analytic 

single-case model biased as a function of design factors (number of primary studies per 

meta-analysis, number of participants per primary study, series length per primary study), 

data factors ( variances of the error terms, covariance structures, level of treatment 

effect), and analysis factors (form of specification)? 

3. To what extent are confidence interval width and coverage for the fixed effects from a 

three-level meta-analytic single-case model affected as a function of design factors 
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(number of primary studies per meta-analysis, number of participants per primary study, 

series length per primary study), data factors (variances of the error terms, covariance 

structures, level of treatment effect), and analysis factors (form of specification)? 

4. To what extent are the Type I error and power for the test of the fixed effects from a 

three-level meta-analytic single-case model affected as a function of design factors 

(number of primary studies per meta-analysis, number of participants per primary study, 

series length per primary study), data factors (variances of the error terms, covariance 

structures, level of treatment effect), and analysis factors (form of specification)? 

5. To what extent are the variance component parameter estimates from a three-level meta-

analytic single-case model biased as a function of design factors (number of primary 

studies per meta-analysis, number of participants per primary study, series length per 

primary study), data factors (variances of the error terms, covariance structures, level of 

treatment effect), and analysis factors (form of specification)? 

6. To what extent are confidence interval width and coverage for the variance 

components from a three-level meta-analytic single-case model affected as a function of 

design factors (number of primary studies per meta-analysis, number of participants per 

primary study, series length per primary study), data factors (variances of the error terms, 

covariance structures, level of treatment effect), and analysis factors (form of 

specification)? 

Method 

Monte Carlo simulation methods were used to address the aforementioned research 

questions. Multiple design, data, and analysis factors were manipulated in the study. The study 

used a 2x2x2x2x2x5x7 factorial design. Seven experimental variables were manipulated in this 
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study. 1) The number of primary studies per meta-analysis (10 and 30);  2) The number of 

participants per primary study (4 and 8);  3)The series length per participant (10 and 20);  

4)Variances of the error terms (most of the variance at level-one: [σ2=1; Σ� = 0.5, 0.05, 0.5, 0.05; 

 Σ� = 0.5, 0.05, 0.5, 0.05] and most of the variance at the upper levels: [σ2=1; Σ� =  2, 0.2, 2, 0.2; 

 Σ� =  2, 0.2, 2, 0.2]);  5) Levels for the treatment effects[shift in level: 0 and 2.0; shift in slopes 

[0 and 0.2]; 6) the level of autocorrelation and the moving average parameter, respectively: 

[(0,0), ( .2, 0), (.4,0), (.2, .2), (.4, .4)]; and 7) The form of model specification [i.e. ID, AR(1), 

ARMA (1,1)], and error structure selected by LRT, AIC, AICC, and the BIC. For each of the 96 

data and design conditions, 5000 simulated data sets were generated using SAS IML (SAS 

Institute, Inc., 2008). These data sets were then specified using the a priori model selection of the 

level-one error structure and the use of fit criteria (post hoc model selection) of the level-one 

error structure.  

This study first examined the proportion of times that each fit index correctly selected the 

appropriate model. Secondly, this study examined the treatment effects (i.e., the overall average 

treatment effect and the overall average difference between baseline and treatment slope) and the 

variance components (e.g., the between-person within-study variance in the average treatment 

effect, the between-person within-study variance in the average difference between baseline and 

treatment slope, the between-study variance in the overall average treatment effect, and the 

between-study variance in the average difference between the baseline and the treatment slopes) 

in a multi-level model.  
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Discussion of Study Results 

Correct Model Selection  
 
Results indicated that the proportion of times that the ID model was correctly identified 

was greatest for the models selected by the LRT and least for the models selected by the AIC. 

The variability was then explored by running GLM models to identify medium or larger effects. 

The model revealed that the interaction effect of the number of primary studies included in the 

meta-analysis and the type of fit index had an impact on the proportion of times that the ID 

model was correctly selected. The relationship revealed that the proportion of times that the ID 

model was correctly specified increased when the number of primary studies included in the 

meta-analysis increased. However, this increase was not identical across all models; specifically, 

the improvement was greatest for the BIC fit index and least for the models selected by the LRT. 

Past research suggested that the BIC had better performance with increased sample size (Raftery, 

1995), and given that that the SAS PROC MIXED uses the number of independent sampling 

units as the sample size, and in this case, this would imply the number of studies used in the 

meta-analysis. That could be why the noted increased performance with the BIC fit index when 

the number of studies in the meta-analysis (independent sampling units) increased. 

The proportion of times that the AR (1) model was correctly identified was then explored 

and revealed that on average the AR (1) model was correctly selected most often by the LRT, 

and the least  often by the AIC fit index. The results of the GLM models then found that there 

were three medium or larger effects: the series length, the number of studies to be included in the 

meta-analysis, and the type of fit index that was used for selection. When using the three-level 

model, all of the fit indices correctly identified the AR (1) model at least 80% of the time. 

Specifically, the relationship revealed that as the series length increased from 10 to 20, then the 
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proportion of times that the AR (1) model was correctly identified also increased. Similarly, as 

the number of primary studies to be included in the meta-analysis increased, then the proportion 

of times that the AR (1) model was selected correctly also increased. Lastly, the association of 

the proportion of times that the AR(1) was correctly selected greatly depended on the fit index. 

The LRT extremely outperformed the other fit indices, followed by the BIC, and finally the 

AICC and the AIC. Previous work with the two-level models (Ferron, Dailey, & Yi, 2002; 

Kesselman, Algina, Kowalchuk, & Wolfinger, 1999) had suggested that overall the fit indices 

did not perform well in terms of model selection; explicitly, Ferron, Dailey, and Yi (2002) found 

that the AIC only correctly identified the models 47% of the time. Additionally, they found that 

upper level sample size mattered more when there were shorter series.  

The distribution for the proportion of times that the ARMA (1,1) model was correctly 

identified was examined. The results revealed that none of the fit indices correctly selected the 

model more than 20% of the times. The results also indicated that the greatest mean proportion 

of times was for the AIC (M = 0.19), meanwhile the LRT (M = 0.07) had the smallest proportion 

of correct identification for this model. One possible explanation for the low identification rates 

for the LRT is that the log likelihood ratio test would have to reject multiple significant tests in 

order to correctly identify the ARMA(1,1) model. The association of the mean proportion of 

times that the ARMA(1,1) model was correctly identified by the fit indices and the interaction 

effect of the type of fit index and the number of primary studies to be included in the meta-

analysis was then explored. Concretely, for the BIC fit index, the greatest decrease in the correct 

identification was seen when the number of primary studies decreased.  This seemed 

counterintuitive, given the expected improvement with the upper-level sample size increase. This 
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can be due to the fact that, overall (less than 20% of the time), the fit indices did not correctly 

select the ARMA (1,1) model.  

 However, there was hardly any difference for the models selected by the LRT in the 

mean proportion of correct selection when the number of primary studies increased. 

Additionally, Gomez, Schaalje, and Fellingham (2005) found that success rates tend to rely 

greatly on sample size and type of covariance structure; rates tend to be higher for the simpler 

covariance structures. Similar results were found in this current study in which the success rates 

tended to be higher for the models which had less complex error structures for particular fit 

indices. 

Fixed Effects 

 The fixed effects were examined in terms of various outcomes of interest: bias, RMSE, 

confidence interval coverage and width, Type I error, and power for the tests of the fixed effects. 

The extent to which the fixed effects were biased as a function of the study’s design factors was 

examined by looking at two outcomes of interest, the bias and the RMSE. The results indicated 

that for both of the treatment effects, the shift in level and the shift in slopes, the average bias 

value was close to zero, across all of the combinations of the design factors.  

An examination of the RMSE values revealed similar results for both of the treatment 

effects across most of the design factors. However, the RMSE values were impacted by the 

number of primary studies included in the meta-analysis (the RMSE values decreased as the 

number of primary studies increased) and by the variances of the error terms (as the variance 

shifted from most of the variance at the upper levels to most of the variance at level one), the 

RMSE values tended to decrease. This outcome suggest that if possible, researchers should strive 
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to increase their level-three sample size (number of primary studies included in the meta-

analysis).   

An initial analysis of the confidence interval coverage revealed that there was no 

meaningful variability in the mean interval coverage for the fixed effects. Therefore, no further 

investigation was warranted. Prior research (Ferron et al., 2009) had shown that the coverage 

estimates tended to be highest, 0.942 when autocorrelation was modeled versus when the 

autocorrelation was not modeled. However, the current study illustrated that the mean coverage 

approached the nominal value across all seven models for both of the fixed effects (shift in level 

and shift in slope).  

An exploration of the confidence interval widths indicated that as the number of primary 

studies increased and the variances of the error terms shifted to being mostly at level one instead 

of at the upper levels, then the mean interval width tended to decrease. Additionally, for the 

ARMA (1,1) model, the mean interval width vastly decreased as the level of the autocorrelation 

parameter increased. These results indicated again for applied researchers to attempt to add to the 

number of primary studies included in the meta-analysis when possible. This was consistent with 

previous work that investigated the three-level model (Owens, 2011), which found that the 

interval widths tended to be smallest when the number of primary studies was largest and when 

most of the variance was at level one as opposed to most of the variance being at the upper 

levels. The results also supported the findings of previous work which looked at the two-level 

model (Ferron et al., 2009), which showed that the mean interval widths tended to be smallest 

when there were more upper level units (number of participants) and there was less variability 

among the upper level units.  
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The exploration of the Type I error rates indicated that the Type I error fell within 

Bradley’s (1978) liberal criterion for both of the fixed effects. Therefore, no further analyses 

were warranted to examine the variability of the mean Type I error rates. These results are 

slightly different from prior studies (Gomez, Schaalje, & Fellingham, 2005) which found that the 

Type I error rates tended to be higher for the models selected solely by the AIC and BIC. 

However, this current study found that the Type I error tended to be close to the nominal value of 

0.05 across all seven models. 

 Power estimates for the phase effect (shift in level) and the interaction effect (shift in 

slopes) revealed that when most of the variance is at level one, then the power estimates are 

greater than 0.9 and did not tend to depend on the number of primary studies included in the 

meta-analysis. However, when most of the variance is at the upper levels, and the number of 

primary studies is increased, then the mean power estimate also increased. Previous research did 

not look directly at power estimates; however the conclusions regarding the importance of 

increasing the upper level units can still be noted. This study showed that this becomes 

increasingly important when there is great variability at the upper levels. 

An analysis of under-, over-, and correct specification was done to investigate whether 

there was a general rule that can used when selecting a level-one error structure. Specifically, for 

the bias and 95% confidence interval coverage was examined. The analysis found that it really 

did not make a huge difference whether the level-one structure was correctly specified, over-

specified, or underspecified. Therefore, no general rule of thumb could be applied in terms of the 

fixed effects. 
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Variance components 

 Variance components were then analyzed in terms of bias, RMSE, confidence interval 

coverage and widths. First, the bias for both level-three and level-two variance components were 

examined for the treatment effects. Relative bias was also calculated for these parameters since 

their known values were not equal to 1 and the parameter did not contain levels that included the 

value of 0. An exploration of the level-three and level-two variance components revealed that 

although, the estimates tended to be overestimated, there were no medium or larger effects. 

Previous work had revealed that there was substantial bias in the variance components when the 

number of participants were small and the series length was short, either 4 or 8 (Kwok, West, & 

Green, 2007; Murphy & Pituch, 2009) even when the model was correctly specified. 

Additionally, Owens (2011) concluded that the when most of the variance was at the upper 

levels, then there was increasingly more bias in the variance components.  However, this current 

study did not show any of the design factors having a medium or larger effect on the bias for the 

level two and three variance components with the original data. Due to the large range for the 

variance, the data were then trimmed for the relative bias and the RMSE values; the results of the 

additional analyses are contained in Appendix A. 

However, the residual variance tended to be overestimated for the majority of the models 

(all of the models with the exception of the ID model). For the ID model, the bias in the residual 

variance tended to be underestimated. As the level of the autocorrelation parameter increased, 

then the bias in the level-one variance became increasingly larger for all of the models with the 

exception of the ARMA (1,1) model. The residual variance estimate for the ARMA (1,1) model 

tended to be most bias when there was no autocorrelation and least bias when the autocorrelation 

parameter was 0.2.  
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The RMSE for the level-one variance revealed similar results. The RMSE values tended 

to increase with greater levels of autocorrelation and decrease with an increase in the series 

length and total variance for all of the models, except again, for the ARMA (1, 1) model. Some 

of these conclusions support previous work with the three-level model (Owens, 2011) which 

indicated that the bias in the residual variance was dependent on the autocorrelation parameter. 

This would seem intuitive given that the autocorrelation parameter represents the correlation, or 

the relationship between the observations within a participant. The more correlated these errors 

are, then it could be expected that there would be more difficulty in producing precise parameter 

estimates for the level-one variance. Previous work investigating the three-level model did not 

look at the ARMA(1,1) models. The current study found that when there is no autocorrelation, 

then the ARMA(1,1) model was problematic in estimating the level-one variance. The model 

tends to be most precise when there is at least a moderate amount of correlation among the level-

one errors (both ρ and � at least 0.2). This also seems instinctive, given that the ARMA(1,1) 

model is attempting to estimate a more complex correlated level-one error structure. When there 

is no correlation among the level-one error, then the model’s parameter estimates tend to be 

problematic. 

The bias and RMSE found in the autocorrelation parameter was then explored across all 

of the design factors. The interaction between the variances of the error terms and the type of 

model, tended to affect the bias observed for the autocorrelation parameter. When most of the 

variance was at the upper levels, the mean bias for the autocorrelation parameter tended to be 

minimal across the models. Similarly, when most of the variance was at level one, then the 

autocorrelation parameter estimate tended to be slightly underestimated for all of the models, and 

again, this was magnified for the ARMA(1,1) model, when there was no autocorrelation. The 
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study did not completely support other work investigating the three-level model (Owens, 2011), 

which found that on average, the autocorrelation parameter tended to be unbiased across all 

factors. Conversely, this study did indicate that the variances of the error terms did seem to 

impact the precision of the autocorrelation parameter. 

This current study indicated that the moving average parameter tended to be 

underestimated by all of the fit-selected models, but overestimated for the ARMA (1,1) model. 

The bias found in the moving average parameter tended to be greatly impacted by the amount of 

correlation found in the level-one error structure. The parameter estimate was overestimated 

when there was no correlation, slightly underestimated when the moving average parameter was 

0.2, and even more underestimated as the moving average parameter increased to 0.4.  Again, 

this result indicates that there should be at least some moderate level of correlation among the 

error structure in order to observe optimal performance when utilizing a model as complex as the 

ARMA (1,1) model.  

Confidence interval coverage for each of the variance components were estimated as the 

proportion of the confidence intervals at the .95 level that contained the true parameter estimates. 

Coverage intervals for the level-three variance component for the phase effect tended to 

overcover but were closest to the nominal value of 0.95 when the number of primary studies was 

increased from 10 to 30.  Further examination of the effects revealed that the relationship 

between interval coverage and the variances of the error terms depended on the number of 

participants. Furthermore, when most of the variance was at the upper levels, the impact of the 

level-two sample size was attenuated. However, when most of the variance of the error terms is 

at level one, the mean interval coverage greatly increased as the number of participants 

increased.  Specifically, when most of the variance is at the upper levels, regardless of the level-
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two sample size, then the mean interval coverage would tend to overcover, or would be higher 

than the nominal value of 0.95. When most of the variance is at level one, and the number of 

participants is 4, then the interval coverage tend to undercover. If the number of participants is 

increased to 8, then the interval coverage tend to overcover. 

Interval coverage for the interaction effect for the level-three variance component was 

then investigated. When most of the variance of the error terms is at the upper levels, and the 

series length was 10, then the interval tend to slightly overcover, and this was magnified when 

the series length was increased to 20. However, when most of the variance is at level one, and 

the series length was 10, then the interval would undercover, and when the series length was 

increased to 20, then the coverage would tend to overcover. There was little to no difference 

between the levels of the error variances when the series length was 20. Additionally, when the 

number of participants was 4, the mean interval coverage for the interaction effect tended to 

undercover, and the inverse was observed, the mean interval coverage tended to overcover when 

the number of participants was 8. Prior research involving the three-level meta-analytic model 

(Owens, 2011) also indicated that the coverage for the level-three variance components tended to 

be greater than the nominal value of 0.95. The research also showed that similar impact factors: 

the combinations of sample sizes at each of the levels and the variances of the error terms.  

Interval coverage for the level-two variance components for both of the intervention 

effects tended to slightly undercover. A further examination into the medium or larger effects for 

the level-three variance component for the phase effect (shift in level) indicated that when the 

most of the variance of the error terms is at level one, the mean interval coverage tended to 

increasingly undercover, or fall below the nominal value of 0.95. This undercoverage was 

magnified for the ID model, with interval coverage approximately 0.60. Similarly, the analysis 
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revealed that for all of the models, with the exception of the ID model, the level of 

autocorrelation did not affect coverage. However, for the ID model, the mean interval coverage 

was lowest when the autocorrelation parameter was greatest. There were instances when the 

coverage was close to 0 for the ID model. Additionally, for the ID model, coverage approached 

the nominal value of 0.95 when there was no autocorrelation. Similar results were found for the 

level-two variance component for the shift in slopes (interaction effect). This was similar to 

previous work analyzing the three-level models (Owens, 2011) which also found that the level-

two variance components tended to undercover. 

Confidence interval coverage for level-one residual variance was then analyzed as a 

function of the design factors in the study. The coverage was problematic, ranging from a mean 

of 0.56 to 0.70 across the various models. Only the medium or larger effects were examined and 

found that the mean interval coverage for the residual variance decreased to even lower values as 

both the level of autocorrelation and the number of primary studies to be included in the meta-

analysis increased. Additionally, the interval coverage for the level-one variance was lower when 

the series length was longer for all models with the exception of the ID model. The reverse was 

true for the ID model, which showed an increase in the mean interval width when the series 

length was longer. Prior work involving the three-level model (Owens, 2011) also found that the 

interval coverage for the level-one variance was lower than the nominal rate of 0.95. An 

additional finding in prior works (Owens, 2011) showed that when the level of autocorrelation 

was zero, then the coverage rates were optimal, which is consistent with this current study. 

However, this study also found that again, the combination of the number of primary studies and 

series length also had an impact on the interval coverage rates for the residual variance. 
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The distribution for the coverage for the autocorrelation parameter illustrated great 

variability both across and within the models. A further examination into the medium or larger 

effects revealed that for the AR(1) model, the mean interval coverage was similar (approached 

the nominal value of 0.95) across all levels of the autocorrelation parameter. The fit selected 

models revealed that the mean interval coverage was lower than the nominal value with 

moderate levels of autocorrelation (ρ = 0.2) and approached the nominal value when there was 

no autocorrelation (ρ = 0.0). Finally, the ARMA(1,1) model illustrated the inverse relationship, 

the mean interval coverage increased as the level of the autocorrelation parameter increased from 

0.0 to 0.4. When the level of the autocorrelation parameter was greatest, then the interval 

coverage for the ARMA (1,1) model approached nominal value. These findings again supports 

prior work (Gomez, Schaalje, & Fellingham, 2005) and revealed the fit selected models tend to 

perform better with the less complex error structures, while the ARMA(1,1) tend to favor the 

more complicated error structures. 

Mean interval coverage was then analyzed for the moving average parameter. 

Additionally, the medium or larger effects illustrated that the mean interval coverage decreased 

as the level of the autocorrelation parameter increased from 0.0 to 0.2, but remained comparable 

from ρ = 0.2 to ρ = 0.4. However, a more in-depth analysis revealed the effect of the level of the 

moving average parameter on the mean interval coverage depended on the type of model. 

Specifically, the interval coverage was greatest for the fit index selected models when the level 

of the moving average parameter was 0.0, and smallest when the moving average parameter was 

0.2 and 0.4. However, for the ARMA (1,1) model, the mean interval coverage was lowest when 

the moving average parameter was 0.0 and greatest when the parameter was 0.2 and 0.4. This 

conclusion reinforces a common trend in this chapter: the fit index selected models tend to have 
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optimal performance for less complex models, while the ARMA(1,1) performs best for more 

complicated error structures. 

Confidence interval width was described as the average difference between the upper and 

the lower limits of the 95% confidence intervals. The confidence interval width for the both the 

level-three and level-two variance components were analyzed. The widths were large, this 

finding is consistent with prior work dealing with both the two-level (Ferron et al., 2009) and the 

three-level (Owens, 2011) models. Interval widths for the level-one variance revealed that the 

mean interval width decreased as the series length, number of participants, and number of studies 

to be included in meta-analysis increased. Previous work (Owens, 2011) found similar results 

that the widths became even smaller with increased sample size at each level. Additionally, 

Owens (2011) had found that the level of the autocorrelation parameter also affected the interval 

width. This current study did find a similar conclusion, however also finding that this depended 

on the type of model. More specifically, for the AR (1) model, the width tended to decrease as 

the level of the autocorrelation increased. There was no impact on the width for the ID model 

with varying levels of autocorrelation.  

Confidence interval width for the autocorrelation parameter was impacted by the 

interaction effect: the type of model that was used to estimate the parameters and the level of the 

autocorrelation parameter. For the correctly specified first-order autoregressive model, AR (1), 

there was little difference in the mean interval width. The models selected by the fit indices 

revealed that the width were narrowest when there was no autocorrelation and wider for the 

higher levels of autocorrelation. The ARMA (1,1) model illustrated, again, the better accuracy 

for the higher levels of autocorrelation. The mean interval width was greatest (M = 8.30) for the 

correctly specified ARMA (1, 1) model, which seemed again kind of counter intuitive. One 
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possible explanation again, could be the fact that the fit selected models rarely correctly 

identified (less than 20% of the time) the ARMA (1,1) model, therefore rarely estimating the 

moving average parameter. This can be coupled with the fact that the ARMA (1, 1) model is not 

precise, however, it is estimating the model more often than the fit-selected models. The interval 

width decreased greatly for the ARMA (1, 1) model as the level of moving average parameter 

increased. This again, maintained the notion that the performance of the ARMA (1, 1) model is 

greatly improved with the presence of a more correlated level-one error structure. 

The analysis for the both the level-three and level-two variance components revealed that 

the bias was comparable across the models for these variance components. However, there 

seemed to be a difference in the estimation of the residual variance based on whether the level-

one error structure was correctly, under-, or over- specified. Specifically, the analysis revealed 

that for the residual variance, when the ID model is the correct model, the bias was minimal for 

the ID model, but greatest for the ARMA (1,1) model. When AR(1) was the correct model for 

the residual variance, the bias was comparable for the under-specified (ID model), and the 

correctly-specified AR(1) model. However, the ARMA(1,1) model did not do a comparable job 

estimating the residual variance. This conclusion again supporting the finding that the ARMA 

(1,1) model tended to perform worse with little to no autocorrelation. 

Limitations of the Study  

There are many benefits to conducting Monte Carlo or simulation research. These types 

of studies allow researchers to operate under the true parameter values and determine how 

various design factors or values for these factors can impact the true parameter estimates. The 

conditions, that is, the design factors and the values chosen for each of those factors, affect the 

study’s generalizability.  
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The data in this study were simulated based on specific design conditions. Those 

conditions were chosen based on a review of single-case literature, meta-analyses of single-case 

data, and applied work that was done using the three-level model to aggregate data across 

studies. The specific conditions chosen for this study are only a portion of the possible options 

that could have been included in this current study. Therefore, the results of this study can only 

be generalized to studies with the same or similar conditions. Any conclusions beyond the 

observed conditions should be interpreted with caution. The next section will address detailed 

limitations based on the specific design factors that were used in this study.  

First, the study assumed that all of the primary studies included in the meta-analysis used 

a multiple-baseline design. This design was selected over the previously discussed reversal (or 

A-B-A-B) design that was used in the social behavior study (Lorimer & Simpson, 2002) or even 

the popular alternating treatment design (Kazdin, 2009; Shadish & Sullivan, 2011).  An 

additional feature of the single case studies was that the dependent variable was assumed to be 

continuous for all of the studies. The use of continuous variables in single-case studies is 

common in terms of mathematics achievement (Billingsley, Scheuermann, & Webber, 2009) or 

words read per minute (Tam, Heward, & Heng, 2006). There are various types of outcomes that 

are commonly used in single case studies, such as binary, ordinal, or count outcomes, for 

example, counting the number of times that a student talks out without raising their hands or the 

number of times that a student leaves their seat. These examples would require different types of 

assumptions using a Poisson distribution (Shadish & Rindskopf, 2007; Shadish et al., 2008). 

This study assumed that the same outcome was used across studies. This is a huge 

assumption considering that outcomes can be measured in a variety of ways. For example, there 

are many measures that can be used to appropriately measure mathematics achievement. 
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Additionally, the models that were used to analyze the data only included linear trends, however, 

more complex trends, such as adding a quadratic or cubic term, could have been used; non-linear 

trends are also commonly used to investigate single case data (Beretvas, Hembry, Van den 

Noortgate, & Ferron, 2013; Shadish & Rindskopf, 2007). In addition to assuming the same 

outcome, the study used the raw data in the synthesis of the study, perhaps there could be 

different results if the data were standardized instead. 

This study also found that overall, the treatment effects, including both the shift in level 

and the shift in slopes, were not biased. However, this study did not look at the effects on 

particular groups of individuals, such as boys vs. girls. This would involve conducting some 

moderator analyses. 

Implications for Researchers, Meta-analysts, and Methodologists 

Meta-analysis of single-case studies has become increasingly popular, due to many 

elements. Accountability and the need to associate a study with an effect have led to statistical 

methods being applied, in addition to the popular visual analysis of single case data. The study 

involves not only look at an intervention within a study, but examines a method for combining 

treatment effects across multiple studies using the raw data from single-case studies. This study 

has various implications, not only for the applied researchers who are conducting intervention 

research daily; but also for the meta-analysts, who seek to investigate intervention effectiveness 

across multiple studies. Additionally, this study has significance for the methodologists who seek 

precise methods for determining treatment effects when meta-analyzing single-case research. 

The results of this study can also be applied beyond the framework for this model. The 

results can be generalized to many three-level models. This can include, but is not limited to 
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most longitudinal studies, that may have multiple observations nested within an individual, 

individuals nested within studies or schools or even, classrooms.  

Implications for the Applied Single-Case Researcher 

 First, this study examined the use of fit indices to correctly identify covariance structures 

and found that certain fit indices performed optimal under a range of conditions. For the ID 

model (assuming the data has no autocorrelation), the LRT tended to have the best performance. 

The AR(1) model was correctly identified most often by the LRT index, however performance 

across all of the models was improved with increased series length and increasing the number of 

primary studies. All of the fit indices on average, correctly identified the AR(1) model at least  

80% of the times.  

The overall performance of the fit indices for selecting the ARMA(1,1) model was not as 

positive. None of the fit indices used in this current study correctly identified the ARMA(1,1) 

model more than 20% of the time. However, if one of the aforementioned indices must be used 

to identify the ARMA(1,1) model, then choose the AIC, for the  AIC correctly selected the 

model the most often and the LRT fit index selected the model the least often. These findings 

indicate that fit indices work well for the less complicated error structure (ID and AR(1)), 

however if the researcher believe the data has a more complex error structure, such as 

ARMA(1,1) then fit indices is not be a suitable option for correct model selection. The 

researcher should just select the level-one error structure a priori. The conclusions also suggest 

that increasing the series length improved performance of the fit indices across all models.  

Given this conclusion, it is recommended that if researchers would like to use fit indices for 

model selection, then increasing the number of observations would increase the precision of 

correct model identification.  
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Another factor that continued to impact parameter estimates was the amount of total 

variance in the study. This impact can be reduced if applied researchers can attempt to control 

the amount of extraneous variability in the study that may be due to the study’s design. One 

example would be to ensure that there is stable performance in the baseline phase. Kazdin (2011) 

characterizes stable performance as one that is absent of trend or slope with little to no 

variability. Additionally, results revealed that increasing the number of participants in the study 

could greatly reduce the bias observed in the variance components. 

Implications for the Applied Single-Case Meta-analyst 

Meta-analysts who are interested in the treatment effects (both the shift in levels and the 

shift in slopes), the results are promising. Overall, the treatment effects were not biased across 

the studies, however more precise estimates can be obtained with increasing number of studies to 

be included in the meta-analysis. The treatment effects are sometimes, of most value to answer 

the question as to whether or not the intervention was effective across studies. However, maybe 

work can be done in terms of looking at potentially adding moderators to gain a deeper 

understanding of the treatment effects across particular subgroups or factors. Additionally, the 

level of autocorrelation only affected the ARMA (1,1) model: more precise estimates were found 

with increasing levels of autocorrelation for the ARMA(1,1) model.  This seems again, intuitive 

given that this model is trying to estimate a very complex correlated error structure, and if the 

error structure is not correlated, then the ARMA (1,1) model should not be used. The current 

study supported past research and revealed that the variance components (both level-three and 

level-two) were biased across all design factors. However, slight improvements were seen when 

the number of studies to be included in the meta-analysis were increased. This would imply that 
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when possible, meta-analyst should attempt to increase the number of studies to be included in 

the meta-analysis. 

The level-one variance components (residual variance, autocorrelation parameter, and the 

moving average parameter) were biased, and the precision of the estimates heavily depended on 

the level of autocorrelation that was used in the model. The residual variance became more bias 

with increased autocorrelation; conversely, the moving average parameter became less biased 

with increased autocorrelation. The precision of the autocorrelation parameter was unaffected by 

varying levels of the correlated errors. This suggests to meta-analysts that the presence of a 

correlated vs. uncorrelated level-one error structure should determine which model one chooses 

for their data. Consequently, this can greatly impact the accuracy of the parameter estimates and 

thus, inferences that can be made from these estimates. Therefore, if the meta-analyst 

hypothesizes that the error structure is uncorrelated (similar to an ID model) or has a simple 

correlated error structure, then the fit indices are reliable for selection of the correct error 

structure. However, if the error structure is assumed to be more complex, then selecting this error 

structure a priori is better than relying on the fit indices. 

Implications for Methodologists 

The study analyzed the use of a range of violations to the independence error assumption. 

Additionally, the study examined the accuracy of parameter estimates when the models were 

misspecified.  Overall, the model was robust to many of the misspecifications in terms of the 

treatment effects. However, for the variance components, the model did not perform as well. It 

appeared that the model would randomly malfunction, and occasionally estimate the variance to 

be large, which led to the average parameter estimates being biased. Further work should be 
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done using different estimation methods, such as the Bayesian approach (Baldwin & Fellingham, 

2013; Gelman, 2006) to see if the observed bias in the variance components can be reduced.  

Additionally, methodologists may want to look at coupling the violation of the error 

assumption with other violations such as also investigating non-normal distributions. This would 

be a reasonable study given that many of the data in single case research is not continuous and 

normally distributed. Lastly, more simulation work can be done to see if the performance of the 

fit indices would improve is there was cutoff instead of just looking at relative differences when 

utilizing the fit indices to correctly identify the level-one error structure (e.g. AIC smaller by at 

least 2 or 3). 
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APPENDIX A: TRIMMED DATA ANALYSIS 
 
 

Trimmed Data Analyses for the Variance Components 

 Relative Bias 

The next section describes the additional analyses that were conducted for the trimmed 

relative bias values for the variance components for each of the treatment effects across both of 

the upper levels for the model. 

Level-three variance for the overall average treatment effect for the phase effect 

(shift in level).  GLM models were run to determine if any of the design factors had a medium or 

larger effect; the effects (the number of primary studies to be included in the meta-analysis [η
2= 

0.093] and the variances of the error terms [η
2= 0.096]) were identified. The model including 4-

way interactions explained 95% of the variability. The figure (see Figure A1) below displays the 

effects and the means for the relative bias across each value for the effect. Specifically, the 

relative bias decreased as the number of primary studies increased from 10 (M = 0.01, SD = 

0.02) to 30 (M = 0.002, SD = 0.009). The variability also tended to decrease with increased 

number of primary studies included in the meta-analysis.  
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Figure A1. The relationship of the trimmed distribution for the level-three variance of the phase 
effect across the number of studies to be included in the meta-analysis. 

 

Furthermore, the relative bias for the level-three variance of the phase effect (shift in 

level) tended to decrease as the variance was shifted from being mostly at level one (M = 0.01, 

SD = 0.02) to the upper levels (M =0.002, SD = 0.008). The variability also tended to decrease 

with more total variance, or again, as the variance was shifted from being mostly at level-one to 

being mostly at the upper levels. 
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Figure A2. The relationship of the trimmed distribution for the level-3 variance of the phase 
effect across the variances of the error terms. 
 

Level-three variance for the overall average treatment effect for the interaction 

effect (shift in slopes). The variance for the bias for the level-three variance of the interaction 

effect was further investigated for the trimmed relative bias. The GLM models, which included 

5-way interactions and explained 93.7% of the variability, revealed two significant factors that 

the variances of the error terms (η
2= 0.06) and the interaction of the type of model and the series 

length (0.07) had at least a medium effect. The mean relative bias decreased slightly as the 

variances shifted from being mostly at level one (M = 0.018, SD = 0.04) to most of the variance 

being at the upper levels (M = 0.004, SD = 0.012). The variability also tended to decrease as the 

variability shifted to being most at the upper levels as reflected below by Figure A3. 

 

Most at Level-One Most at Upper-Levels 

Error Variances 
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Figure A3. The bias for the trimmed distribution for the level-3 variance for the interaction effect 
(shift in slopes) as a function of the variance for the error terms. 
 

The relationship of the bias for the level-three variance for the shift in slopes was then 

analyzed as a function of the interaction of the type of model and the series length. The line 

graph (see Figure A4 below) illustrates that the bias is higher across all seven models when there 

is a shorter series length, however this is accentuated for the ID model. The ID model shows a 

huge increase in the bias when the series length is 10.   

Most at Upper-Levels Most at Level-One Most at Upper-Levels 
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Figure A4. The relative bias for the level-3 variance for the shift in slopes for the interaction of 
the type of model and the series length. 
 

 

Level two variance for the phase effect (shifts in level). The model, including 3-way 

interactions, explained 99.7% of the variability. The results revealed one medium or larger 

effect: the interaction of the level of autocorrelation and the type of model (η2= 0.22). Graphs 

were produced to further examine the trimmed relative bias values.  

 Figure A8 below illustrates that the mean bias is similar across all of the models with the 

exception of the ID model. For the ID model, the mean relative bias tends to increase greatly as 

the level of autocorrelation increases. 

 

Series Length
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Figure A5. The distribution of the trimmed relative bias for the variance for the level-two phase 
effect as a function of the interaction between the level of the autocorrelation and the type of 
model. 

 
 Level two variance for the phase effect (shift in slope). The model, including 4th order 

interactions explained 97.7% of the variability and revealed two medium or larger effects: the 

three-way interaction of the series length and the variances of the error terms and the level of 

autocorrelation (η2= 0.06) and the two-way interaction of the level of autocorrelation and the 

type of model (η2= 0.19). The graphs below further examine the relationship of both effects on 

the mean relative bias for the level-two variance for the shift in slopes.  

 Figure A6 (top panel) illustrates that for the shorter series length of 10 and when most of 

the variance is at level one, then mean bias increases as the level of autocorrelation increases. 

However, when the series length is shorter and most of the variance is at the upper levels  

 
 
 
 
 

Level of Autocorrelation
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Figure A6. The effect on the mean relative bias for the level two variance for the shift in slopes 
as a function of the three way interaction between the level of autocorrelation, the error variances 
and the series length. 

Level of Autocorrelation

Level of Autocorrelation

Series length = 10 

Series length = 30 
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Figure A7. Distribution of trimmed relative bias for the shift in slopes as a function of the 
interaction between the level of autocorrelation and the type of model. 
 
 Figure A7 above displays little difference for the mean bias across the seven models with 

the exception of the ID model. Again, for the ID model, the mean bias increases as the level of 

autocorrelation increases. 

Root Mean Square Error (RMSE) 

The next section describes the additional analyses that were conducted for the trimmed 

RMSE values for the variance components for each of the treatment effects across both of the 

upper levels for the model. 

 Level-three variance for the overall average treatment effect for the phase effect 

(shift in level).  The GLM models (including two-way interactions) explained 99% of the 

variability and revealed one medium or larger effect: the interaction of the number of primary 

studies with the variances of the error terms (η
2= 0.06). Further examination of the interaction 

with the RMSE values illustrated (see Figure A8) that for the shorter series length (10), the 

Level of Autocorrelation
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RMSE values tend to be greater than when the series length is longer (30), however the gap is 

even greater when the variances of the error terms is mostly at the upper levels.  

 

 

 
Figure A8. The line graph illustrates the effect of the interaction of the number of primary 
studies and the variances of the error terms on the trimmed RMSE values for the level-three 
variance for the shift in level. 
 

 

Number of Primary Studies
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Figure A9. The relationship of the trimmed RMSE values for the level-three variance for the 
interaction effect across the number of primary studies. 
 

Level-three variance for the overall average treatment effect for the interaction 

effect (shift in slopes).  The GLM models included two-way interactions, which explained 99% 

of the variability found that there were two medium or larger effects. The number of primary 

studies (η2= 0.20) and the variances of the error terms (η
2= 0.67) tended to have the most impact 

on the trimmed RMSE values for the level-three variance for the interaction effect. The two 

boxplots below, Figures A9 and A10, respectively, displays these effects and their impact on the 

RMSE values.  
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Figure A9 above revealed that the mean and the variability in the RMSE values tended to 

decrease with increased number of primary studies. Furthermore, in Figure A10 below, the mean 

and the variability of the RMSE values tended to increase as the variance was shifted from being 

mostly at level one to most of the variance being at the upper levels. 

 

 

Figure A10. The relationship of the trimmed RMSE values for the level-three variance for the 
interaction effect across the error variances. 
 

Level-two variance for the overall average treatment effect for the shift in level.  The 

model, including third order interactions, explained 95.9% of the variability. There were three 

medium or larger effects: number of participants (η
2= 0.12), number of studies to be included in 

the meta-analysis (η2= 0.22), the variance of the error terms (η
2= 0.43). 

Most at Level-One Most at Upper-Levels 
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First, the mean for the RMSE values for the level-two variance for the shift in level 

decreased as the number of the participants increased from 4 to 8. The variability also tended to 

decrease with increased number of participants from 4 to 8 as is displayed below in Figure A11. 

  

 
Figure A11. The box plot illustrating the distribution of the trimmed RMSE values for the 
variance for the phase effect as a function of the number of participants. 
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Figure A12. The box plot illustrating the distribution of the trimmed RMSE values for the 
variance for the phase effect as a function of the number of primary studies. 
 

The figure above  (Figure A12) shows the RMSE values for the level-two shift in level as 

a function of the number of primary studied. The mean and the variability of the RMSE values 

tended to decrease as the number of primary studies increased from 10 to 30. Furthermore, the 

variability appeared similar across the levels for the number of primary studies, with the 

exception of the outlier when the number of primary studies was larger (= 30).  

Conversely, the mean RMSE values tended to increase as the variance of the error terms 

(see Figure A13 below) were shifted to mostly being at level one to mostly being at the upper 

levels. The variability also tended to increase, with the presence of an outlier, with increased 

total variability. 
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Figure A13. The box plot illustrating the distribution of the trimmed RMSE values for the 
variance for the phase effect as a function of the variance of the error terms. 
 
 

Level-two variance for the overall average treatment effect for the interaction effect 

(shift in slopes).  GLM models were run to further examine the relationship of the design factors 

with the trimmed level two variance for the shift in slopes. The model including two-way 

interactions explained 98.4% of the variability and revealed four medium or larger effects: 

number of participants (η2= 0.08), the number of primary studies to be included in meta-analysis 

(η2= 0.13), the series length (η2= 0.26), and the variance of the error terms (η
2= 0.35).  

As the number of participants (see Figure A14), the number of primary studies (see 

Figure A15), and the series length (see Figure A16) increased, then the mean RMSE values 

decreased. Furthermore, the mean RMSE values increased as the variance of the error terms 

Most at Level-One Most at Upper-Levels 
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(see Figure A17) were shifted from most of the variance being at level-one to most of the 

variance being at the upper levels. Both levels for the number of participants seemed to include 

several outliers at the upper ends. 

 

 
Figure A14. The box plot illustrating the distribution of the trimmed RMSE values for the 
variance (level two) for the shift in slopes as a function of the number of participants. 
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Figure A15. The box plot illustrating the distribution of the trimmed RMSE values for the 
variance (level two) for the shift in slopes as a function of the number of primary studies to be 
included in meta-analysis. 
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Figure A16. The box plot illustrating the distribution of the trimmed RMSE values for the 
variance (level two) for the shift in slopes as a function of the series length. 
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Figure A17. The box plot illustrating the distribution of the trimmed RMSE values for the 
variance (level two) for the shift in slopes as a function of the error variances. 
 
 

Level one variance or residual variance. The resulting model included 3-way 

interactions and explained 98% of the total variability. The following medium effects were 

found: the series length or number of observations (η2 = 0.06), the interaction of the level of the 

autocorrelation parameter and the type of model (η
2 = 0.07 ), the interaction of the variances of 

the error terms and the type of model (η
2 = 0.11). Graphs were created to analyze the association 

of the mean RMSE values for the level one variance with these effects. The graph below (see 

Figure A18) depicts the association of the trimmed RMSE values for the level one variance and 

the number of observations (series length). Specifically, the graph demonstrates that as the series 

length is increased from 10 then the mean RMSE for the level one variance is decreased. 

Most at Level-One Most at Upper-Levels 
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Figure A18. The box plot illustrating the distribution of the trimmed RMSE values for the 
level one variance across the series length. 

 
The line graph below in Figure A19 illustrates the relationship of the mean RMSE values 

for the level one variance and the interaction of the variances of the error terms and the type of 

model. Furthermore, the graph shows that when most of the variance is at level one the mean 

RMSE values is consistently lower across all of the models than when most of the variance is at 

the upper levels. However, that difference is greater when most of the variance is at the upper 

levels for some of the models. For example, the ARMA(1,1) model has the greatest increase in 

the mean RMSE values for the level one variance when the variances of the error terms are 

shifted from most of the variance being at level one to most of the variance being at the upper 

levels. The smallest difference is seen for the ID model, in which there was very little change in 
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the mean RMSE values for the level one variance when the variances of the error terms were 

shifted from most of the variance being at level one to most of the variance being at the upper 

levels. 

 
 

 
Figure A19. Line graph illustrating the relationship between the mean RMSE values for the level 
one variance and the interaction effect of the variances of the error terms and type of model. 
 
 
 
 

Variances of the Error Terms
Most at Level-One 

Most at Upper-Levels 
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Figure A20. Line graph illustrating the association between the mean RMSE values for the level 
one variance and the interaction effect of the level of the autocorrelation parameter and type of 
model. 
 

Lastly, the association of the mean RMSE values for the level one variance and the 

interaction effect of the level of the autocorrelation parameter and the type of model were 

analyzed using a line graph (see Figure A20). Across some of the models, such as the ID, AR(1), 

and models selected by LRT, the mean RMSE values for the level one variance tended to 

increase as the level of the autocorrelation parameter increased. For the remainder of the fit-

index selected models (AIC, AICC, and BIC), the mean RMSE values is smallest when ρ = 0.2 

and largest when ρ = 0.4. For example, for the models selected by BIC, the mean RMSE values 

for the level one variance are as follows: ρ = 0.2 (M = 0.21, SD = 0.17); ρ = 0.0 (M = 0.27, SD = 

0.19); ρ = 0.4 (M = 0.30, SD = 0.14). Similar patterns are observed for the AIC and AICC 

models. Finally, a vast decline in the mean RMSE values is noticed for the ARMA(1,1) model as 

the level of the autocorrelation is increased from 0.0 (M = 0.56, SD = 0.43) to 0.2 (M = 0.31, SD 

= 0.25) to 0.4 (M = 0.32, SD = 0.18).  

Level of Autocorrelation
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APPENDIX B: TABLES OF ETA-SQUARED VALUES 
 

 

Table A1 
Eta-Squared Values (η2)for the Association of the Design Factors with the Proportion Correct for the ID 
Model  
 η

2 
Type of Fit Index 

Number of Primary Studies            

Number of Primary Studies*Type of Fit Index       

Error Variance           

Series Length             

Number of Participants 

Number of Primary Studies * Error Variance                 

Number of Participants* Error Variance                      

Series Length* Number of Primary Studies        

Level of the Fixed Levels          

Series Length* Error Variance                          

Number of Participants * Type of Fit Index 

Series Length * Number of Participants        

Number of Participants *Level of Fixed Level      

Error Variance * Type of Fit Index 

Series Length * Type of Fit Index 

Error Variance * Level of the Fixed Levels          

Level of the Fixed Levels * Type of Fit Index 

Number of Primary Studies * Level of the Fixed Levels          

Number of Participants * Number of Primary Studies               

Series Length * Level of the Fixed Levels               

.771 

.068 

.064 

.038 

.027 

.006 

.004 

.002 

.002 

.002 

.001 

.001 

.001 

.0003 

.0003 

.0001 

.00007 

.00006 

.00002 

.00001 

.00000 

Total Explained 0.988 
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Table A2 
Eta-Squared Values (η2)for the Association of the Design Factors with the Proportion Correct for the 
AR(1) Model 

 η
2 

Type of Model 0.23552 
Number of Primary Studies 0.15765 
Series Length 0.09592 
Autocorrelation 0.09292 
Number of Participants 0.05866 
Series Length*Number of Primary Studies 0.0507 
Series Length*Autocorrelation 0.04417 
Number of Primary Studies*Autocorrelation 0.03982 
Series Length*Number of Participants 0.03029 
Series Length*Number of Primary Studies*Autocorrelation 0.02755 
Number of Primary Studies*Type of Model 0.02699 
Number of Participants*Number of Primary Studies 0.02216 
Number of Participants*Autocorrelation 0.02103 
Series Length*Number of Participants*Autocorrelation 0.01305 
Series Length*Number of Participants*Number of Primary Studies 0.0122 
Number of Participants*Number of Primary Studies*Autocorrelation 0.01108 
Error Variance 0.00712 
Error Variance*Autocorrelation 0.00683 
Autocorrelation*Type of Model 0.00598 
Number of Primary Studies*Autocorrelation*Type of Model 0.00449 
Series Length*Autocorrelation*Type of Model 0.00448 
Series Length*Error Variance 0.00203 
Number of Participants*Autocorrelation*Type of Model 0.00199 
Series Length*Error Variance*Autocorrelation 0.00168 
Error Variance*Type of Model 0.0011 
Series Length*Number of Primary Studies*Type of Model 0.00109 
Series Length*Type of Model 0.00077 
Series Length*Number of Participants*Type of Model 0.00063 
Number of Participants*Number of Primary Studies*Type of Model 0.0005 
Series Length*Number of Participants*Error Variance 0.00035 
Series Length*Number of Primary Studies*Error Variance 0.0003 
Number of Participants*Type of Model 0.00026 
Series Length*Error Variance*Type of Model 0.00024 
Number of Primary Studies*Error Variance*Type of Model 0.00023 
Number of Primary Studies*Error Variance 0.00019 
Error Variance*Autocorrelation*Type of Model 0.00016 
Number of Participants*Number of Primary Studies*Error Variance 0.00015 
Number of Primary Studies*Error Variance*Fixed Level 0.00014 
Level of Fixed Level 0.00009 
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Table A2 (Continued) 

 η
2 

Number of Participants*Level of Fixed Level 0.00009 
Number of Participants*Error Variance*Type of Model 0.00009 
Number of Participants*Error Variance*Autocorrelation 0.00008 
Series Length*Number of Participants*Fixed Level 0.00007 
Number of Primary Studies*Error Variance*Autocorrelation 0.00007 
Level of Fixed Level*Autocorrelation 0.00007 
Number of Participants*Number of Primary Studies*Fixed Level 0.00005 
Error Variance*Level of Fixed Level*Autocorrelation 0.00005 
Number of Primary Studies*Level of Fixed Level*Autocorrelation 0.00003 
Number of Participants*Error Variance*Fixed Level 0.00002 
Series Length*Level of Fixed Level 0.00002 
Series Length*Error Variance*Fixed Level 0.00002 
Series Length*Number of Primary Studies*Fixed Level 1.49E-05 
Number of Participants*Level of Fixed Level*Autocorrelation 1.29E-05 
Series Length*Level of Fixed Level*Autocorrelation 1.14E-05 
Error Variance*Level of Fixed Level 8.09E-06 
Error Variance*Fixed Level*Type of Model 7.07E-06 
Number of Participants*Fixed Level*Type of Model 6.78E-06 
Level of Fixed Level*Type of Model 5.19E-06 
Level of Fixed Level*Autocorrelation*Type of Model 2.99E-06 
Number of Primary Studies*Fixed Level*Type of Model 1.6E-06 
Series Length*Fixed Level*Type of Model 1.52E-06 
Number of Participants*Error Variance 1.39E-06 
Number of Primary Studies*Level of Fixed Level 7.88E-07 
 

Table A3 
Eta-Squared Values (η2)for the Association of the Design Factors with the Proportion Correct for the 
ARMA(1,1) Model 
 η

2 
Type of Model 0.71737 
Number of Primary Studies 0.09608 
Number of Primary Studies*Type of Model 0.07899 
Autocorrelation 0.02439 
Series Length 0.02074 
Number of Participants 0.0145 
Series Length*Type of Model 0.01005 
Error Variance 0.00531 
Series Length*Number of Primary Studies 0.00451 
Error Variance*Autocorrelation 0.00347 
Number of Participants*Type of Model 0.00285 
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Table A3 (Continued)  
 η

2 
Series Length*Number of Participants 0.00271 
Number of Participants*Number of Primary Studies 0.00145 
Number of Primary Studies*Error Variance 0.00078 
Error Variance*Type of Model 0.0003 
Series Length*Error Variance 0.00021 
Number of Participants*Error Variance 0.00017 
Autocorrelation*Type of Model 0.00013 
Number of Primary Studies*Fixed Level 0.00007 
Series Length*Autocorrelation 0.00005 
Number of Primary Studies*Autocorrelation 0.00005 
Fixed Level 0.00002 
Error Variance*Fixed Level 0.00002 
Fixed Level*Type of Model 0.00002 
Number of Participants*Fixed Level 0.00001 
Series Length*Fixed Level 0.00001 
Number of Participants*Autocorrelation 0.00001 
Fixed Level*Autocorrelation 0 
Moving Average 0 
Series Length*Moving Average 0 
Number of Participants*Moving Average 0 
Number of Primary Studies*Moving Average 0 
Error Variance*Moving Average 0 
Autocorrelation*Moving Average 0 
Fixed Level*Moving Average 0 
Moving Average*Type of Model 0 
Total Explained  
 

Table A4 
Eta-Squared Values (η2)for the Association of the Design Factors with the RMSE Values for the Shift in 
Level 

 η
2 

Error Variance 0.4921 
Number of Primary Studies 0.4523 
Number of Participants 0.01536 
Series Length 0.00204 
Autocorrelation 0.0003 
Type of Model 0.00004 
Moving Average 0.00002 
Fixed Level 0 

Total Explained 0.9622 
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Table A5 
Eta-Squared Values (η2)for the Association of the Design Factors with the RMSE Values for the Shift in 
Slope 

 η
2 

Error Variance 0.45497 
Number of Primary Studies 0.44288 
Series Length 0.03721 
Number of Participants 0.02018 
Autocorrelation 0.00148 
Moving Average 0.0000 
Type of Model 0.0000 
Fixed Level 0.0000 
Total Explained 0.9567 
 

TableA6 
Eta-Squared Values (η2) for the Association of the Design Factors with the CI Width for the Shift in Level 
 η

2 
Autocorrelation*Type of Model 0.1556 
Error Variance 0.1044 
Number of Primary Studies 0.1036 
Type of Model 0.0753 
Error Variance*Autocorrelation*Type of Model 0.0453 
Error Variance*Type of Model 0.0257 
Autocorrelation 0.0240 
Number of Participants*fix*Error Variance*Autocorrelation*Type of Model 0.0177 
Series Length*Number of Participants*Error Variance*Autocorrelation*Type of Model 0.0172 
Series Length*Number of Primary Studies*Error Variance*Autocorrelation*Type of 
Model 0.0156 
Series Length*Autocorrelation*Type of Model 0.0134 
Number of Participants*Autocorrelation*Type of Model 0.0132 
Fixed Level*Error Variance*Autocorrelation*Type of Model 0.0123 
Number of Participants*Type of Model 0.0116 
Number of Primary Studies*Error Variance 0.0115 
Series Length*Error Variance*Autocorrelation*Type of Model 0.0107 
Number of Primary Studies*Type of Model 0.0106 
Number of Primary Studies*Error Variance*Moving Average*Type of Model 0.0089 
Series Length*Number of Primary Studies*Error Variance*the*Type of Model 0.0089 
Number of Participants*Moving Average*Type of Model 0.0083 
Series Length*Error Variance*Moving Average*Type of Model 0.0083 
Error Variance*Moving Average*Type of Model 0.0082 
Series Length*Number of Participants*Moving Average*Type of Model 0.0082 
Series Length*Number of Participants*Number of Primary Studies*the*Type of Model 0.0082 
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Table A6 (Continued) 
 η

2 

Number of Participants*Number of Primary Studies*Moving Average*Type of Model 0.0081 
Number of Primary Studies*fix*Error Variance*Autocorrelation*Type of Model 0.0080 
Number of Participants 0.0080 
Error Variance*Autocorrelation 0.0079 
Number of Primary Studies*Autocorrelation*Type of Model 0.0074 
Series Length*Number of Primary Studies*Autocorrelation*Type of Model 0.0073 
Number of Participants*Fixed Level*Error Variance*Type of Model 0.0072 
Number of Participants*Error Variance*Type of Model_ 0.0069 
Number of Participants*Number of Primary Studies*Error Variance*Type of Model 0.0049 
Number of Participants*Number of Primary Studies*Error 
Variance*Autocorrelation*Type of Model 0.0048 
Number of Participants*Error Variance*Autocorrelation*Type of Model 0.0048 
Number of Primary Studies*Error Variance*Type of Model_ 0.0048 
Series Length*Number of Primary Studies*fix*Autocorrelation*Type of Model 0.0047 
Series Length*Number of Primary Studies*Moving Average*Type of Model 0.0043 
Number of Primary Studies*Moving Average*Type of Model_c 0.0042 
Series Length*Number of Participants*Error Variance*the*Type of Model 0.0041 
Number of Participants*Error Variance*Moving Average*Type of Model 0.0041 
Number of Participants*Number of Primary Studies*Type of Model_ 0.0041 
Number of Participants*Number of Primary Studies*Error Variance*the*Type of Model 0.0040 
Moving Average*Type of Model 0.0038 
Series Length*Moving Average*Type of Model_c 0.0038 
Series Length*Number of Participants*Type of Model_ 0.0037 
Number of Participants*Number of Primary Studies*fix*Autocorrelation*Type of Model 0.0037 
Number of Participants*Number of Primary Studies*fix*Error Variance*Type of Model 0.0037 
Series Length*Fixed Level*Autocorrelation*Type of Model 0.0034 
Number of Primary Studies*Error Variance*Autocorrelation*Type of Model 0.0032 
Fixed Level*Error Variance*Type of Model_ 0.0030 
Number of Participants*Fixed Level*Error Variance*Autocorrelation 0.0029 
Series Length*Number of Participants*Error Variance*Autocorrelation 0.0029 
Series Length*fix*Error Variance*Autocorrelation*Type of Model 0.0028 
Number of Participants*Number of Primary Studies*Autocorrelation*Type of Model 0.0027 
Series Length*Number of Primary Studies*Type of Model_ 0.0027 
Series Length*Number of Participants*Number of Primary Studies*Error 
Variance*Autocorrelation 0.0026 
Series Length*Number of Participants*Number of Primary Studies*Autocorrelation*Type 
of Model 0.0026 
Series Length*Number of Primary Studies*Error Variance*Autocorrelation 0.0026 
Series Length*Number of Participants*Autocorrelation*Type of Model 0.0025 
Series Length*Number of Participants*Number of Primary Studies*Type of Model 0.0024 
Series Length*Autocorrelation 0.0022 
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Table A6 (Continued) 
 η

2 

Fixed Level*Error Variance*Autocorrelation 0.0020 
Number of Participants*Autocorrelation 0.0020 
Number of Primary Studies*Fixed Level*Error Variance*Type of Model 0.0019 
Series Length*Error Variance*Autocorrelation 0.0018 
Series Length*Number of Participants*fix*Error Variance*Type of Model 0.0016 
Number of Participants*Number of Primary Studies 0.0016 
Number of Primary Studies*Error Variance*Moving Average 0.0014 
Series Length*Number of Primary Studies*Error Variance*Moving Average 0.0014 
Number of Participants*Moving Average 0.0013 
Series Length*Error Variance*Moving Average 0.0013 
Error Variance*Moving Average 0.0013 
Number of Participants*Number of Primary Studies*Moving Average 0.0013 
Series Length*Number of Participants*Number of Primary Studies*Moving Average 0.0013 
Series Length*Number of Participants*Moving Average 0.0013 
Number of Primary Studies*Fixed Level*Error Variance*Autocorrelation 0.0013 
Series Length*Number of Participants*fix*Autocorrelation*Type of Model 0.0013 
Number of Participants*Error Variance 0.0012 
Series Length*Number of Primary Studies*Autocorrelation 0.0012 
Number of Participants*Fixed Level*Error Variance 0.0012 
Number of Primary Studies*Fixed Level*Type of Model 0.0011 
Series Length*Type of Model 0.0011 
Number of Primary Studies*Fixed Level*Autocorrelation*Type of Model 0.0011 
Number of Primary Studies*Autocorrelation 0.0011 
Number of Participants*Number of Primary Studies*fix*Error Variance*Autocorrelation 0.0010 
Number of Participants*Fixed Level*Autocorrelation*Type of Model 0.0010 
Series Length*Number of Participants 0.0008 
Series Length 0.0008 
Number of Participants*Number of Primary Studies*Fixed Level*Type of Model 0.0008 
Number of Participants*Number of Primary Studies*Error Variance 0.0008 
Number of Participants*Error Variance*Autocorrelation 0.0008 
Series Length*Number of Primary Studies*Fixed Level*Autocorrelation 0.0007 
Number of Participants*Number of Primary Studies*Error Variance*Autocorrelation 0.0007 
Series Length*Number of Primary Studies*Moving Average 0.0007 
Series Length*Fixed Level*Error Variance*Type of Model 0.0007 
Number of Primary Studies*Moving Average 0.0007 
Series Length*Number of Participants*Error Variance*Moving Average 0.0006 
Number of Participants*Error Variance*Moving Average 0.0006 
Series Length*Number of Participants*Number of Primary Studies*Error 
Variance*Moving Average 0.0006 
Series Length*Number of Primary Studies 0.0006 
Number of Participants*Number of Primary Studies*Error Variance*Moving Average 0.0006 
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Table A6 (Continued) 
 η

2 

Moving Average 0.0006 
Number of Participants*Number of Primary Studies*Fixed Level*Autocorrelation 0.0006 
Series Length*Number of Participants*Number of Primary Studies* Fixed Level *Error 
Variance 0.0006 
Series Length*Moving Average 0.0006 
Number of Participants*Number of Primary Studies*Fixed Level*Error Variance 0.0006 
Series Length*Fixed Level*Autocorrelation 0.0005 
Fixed Level*Type of Model 0.0005 
Number of Primary Studies*Error Variance*Autocorrelation 0.0005 
Series Length*Number of Participants*Number of Primary Studies*Error Variance*Type 
of Model 0.0005 
Number of Participants*Fixed Level*Moving Average*Type of Model 0.0004 
Fixed Level*Error Variance 0.0004 
Series Length*Number of Participants* Fixed Level *the*Type of Model 0.0004 
Series Length*Number of Participants*Number of Primary Studies 0.0004 
Series Length*Fixed Level*Error Variance*Autocorrelation 0.0004 
Series Length*Number of Participants*Fixed Level*Type of Model 0.0004 
Series Length*Number of Participants*Number of Primary Studies*Autocorrelation 0.0004 
Series Length*Number of Participants*Autocorrelation 0.0004 
Number of Primary Studies*fix*Error Variance*the*Type of Model 0.0004 
Number of Participants*Number of Primary Studies*Autocorrelation 0.0004 
Series Length*fix*Error Variance*the*Type of Model 0.0004 
Series Length*Number of Participants*Error Variance*Type of Model 0.0004 
Fixed Level*Error Variance*Moving Average*Type of Model 0.0003 
Fixed Level*Autocorrelation*Type of Model 0.0003 
Series Length*Number of Participants*fix*Error Variance*Autocorrelation 0.0003 
Number of Participants*Number of Primary Studies*fix*the*Type of Model 0.0003 
Number of Primary Studies*Fixed Level*Error Variance 0.0003 
Series Length*Number of Participants*Fixed Level*Error Variance 0.0002 
Series Length*Number of Participants*Fixed Level*Autocorrelation 0.0002 
Number of Primary Studies*Fixed Level 0.0002 
Number of Participants*Fixed Level*Autocorrelation 0.0001 
Number of Primary Studies*Fixed Level*Autocorrelation 0.0001 
Series Length*Number of Primary Studies*Fixed Level*Type of Model 0.0001 
Number of Participants*Number of Primary Studies*Fixed Level 0.0001 
Number of Participants*Fixed Level*Type of Model 0.0001 
Series Length*Error Variance*Type of Model 0.0001 
Series Length*Fixed Level*Error Variance 0.0001 
Fixed Level 0.0001 
Series Length*Number of Participants*Number of Primary Studies*Error Variance 9.67E-5 
Series Length*Number of Participants*Fixed Level*Moving Average 8.41E-5 
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TableA6 (Continued)  

 η2 

Number of Participants*Fixed Level*Moving Average 8.33E-5 
Series Length*Number of Participants*Fixed Level 7.14E-5 
Series Length*Fixed Level*Error Variance*Moving Average 6.73E-5 
Number of Primary Studies*Fixed Level*Error Variance*Moving Average 6.69E-5 
Series Length*Number of Primary Studies*fix*Error Variance*Moving Average 6.54E-5 
Fixed Level*Error Variance*Moving Average 6.35E-5 
Series Length*Number of Participants*Number of Primary Studies*fix*Moving Average 6.25E-5 
Series Length*Number of Participants*Error Variance 5.99E-5 
Fixed Level*Autocorrelation 5.94E-5 
Number of Participants*Number of Primary Studies*Fixed Level*Moving Average 5.66E-5 
Series Length*Fixed Level*Type of Model 5.52E-5 
Number of Participants*fix*Error Variance*the*Type of Model 5E-5 
Series Length*Fixed Level*Moving Average*Type of Model 4.72E-5 
Fixed Level*Moving Average*Type of Model 4.36E-5 
Number of Primary Studies*Fixed Level*Moving Average*Type of Model 3.93E-5 
Series Length*Number of Primary Studies*fix*the*Type of Model 3.68E-5 
Number of Participants*Fixed Level 2.84E-5 
Series Length*Number of Primary Studies*Fixed Level 2.29E-5 
Series Length*Number of Primary Studies*Error Variance*Type of Model 1.58E-5 
Number of Participants*Number of Primary Studies*fix*Error Variance*Moving Average 1.44E-5 
Series Length*Number of Primary Studies*fix*Error Variance*Type of Model 1.32E-5 
Series Length*Number of Participants*Number of Primary Studies*Fixed 
Level*Autocorrelation 8.91E-6 
Fixed Level*Moving Average 8.55E-6 
Number of Primary Studies*Fixed Level*Moving Average 8.29E-6 
Series Length*Fixed Level 8.24E-6 
Series Length*Fixed Level*Moving Average 8.23E-6 
Series Length*Number of Primary Studies*Fixed Level*Moving Average 7.41E-6 
Series Length*Number of Participants*Number of Primary Studies*fix*Type of Model 6.48E-6 
Series Length*Number of Primary Studies*Error Variance 6.11E-6 
Series Length*Number of Participants*fix*Error Variance*Moving Average 6.03E-6 
Number of Participants*Fixed Level*Error Variance*Moving Average 6E-6 
Series Length*Number of Primary Studies*fix*Error Variance*Autocorrelation 5.67E-6 
Series Length*Number of Participants*Number of Primary Studies*Fixed Level 1.93E-6 
Series Length*Error Variance 8.75E-7 
Series Length*Number of Primary Studies*Fixed Level*Error Variance 6.8E-7 
Autocorrelation*Moving Average 0 
Series Length*Autocorrelation*Moving Average 0 
Number of Participants*Autocorrelation*Moving Average 0 
Series Length*Number of Participants*Autocorrelation*Moving Average 0 
Number of Primary Studies*Autocorrelation*Moving Average 0 
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Table A6 (Continued) 

 η2 

Series Length*Number of Primary Studies*Autocorrelation*Moving Average 0 
Number of Participants*Number of Primary Studies*Autocorrelation*Moving Average 0 
Series Length*Number of Participants*Number of Primary 
Studies*Autocorrelation*Moving Average 0 
Error Variance*Autocorrelation*Moving Average 0 
Series Length*Error Variance*Autocorrelation*Moving Average 0 
Number of Participants*Error Variance*Autocorrelation*Moving Average 0 
Series Length*Number of Participants*Error Variance*Autocorrelation*Moving Average 0 
Number of Primary Studies*Error Variance*Autocorrelation*Moving Average 0 
Series Length*Number of Primary Studies*Error Variance*Autocorrelation*Moving 
Average 0 
Number of Participants*Number of Primary Studies*Error 
Variance*Autocorrelation*Moving Average 0 
Fixed Level*Autocorrelation*Moving Average 0 
Series Length*Fixed Level*Autocorrelation*Moving Average 0 
Number of Participants*Fixed Level*Autocorrelation*Moving Average 0 
Series Length*Number of Participants*fix*Autocorrelation*Moving Average 0 
Number of Primary Studies*Fixed Level*Autocorrelation*Moving Average 0 
Series Length*Number of Primary Studies*fix*Autocorrelation*Moving Average 0 
Number of Participants*Number of Primary Studies*fix*Autocorrelation*Moving 
Average 0 
Fixed Level*Error Variance*Autocorrelation*Moving Average 0 
Series Length*fix*Error Variance*Autocorrelation*Moving Average 0 
Number of Participants*fix*Error Variance*Autocorrelation*Moving Average 0 
Number of Primary Studies*fix*Error Variance*Autocorrelation*Moving Average 0 
Autocorrelation*Moving Average*Type of Model 0 
Series Length*Autocorrelation*Moving Average*Type of Model 0 
Number of Participants*Autocorrelation*Moving Average*Type of Model 0 
Series Length*Number of Participants*Autocorrelation*the*Type of Model 0 
Number of Primary Studies*Autocorrelation*Moving Average*Type of Model 0 
Series Length*Number of Primary Studies*Autocorrelation*the*Type of Model 0 
Number of Participants*Number of Primary Studies*Autocorrelation*the*Type of Model 0 
Error Variance*Autocorrelation*Moving Average*Type of Model 0 
Series Length*Error Variance*Autocorrelation*the*Type of Model 0 
Number of Participants*Error Variance*Autocorrelation*the*Type of Model 0 
Number of Primary Studies*Error Variance*Autocorrelation*the*Type of Model 0 
Fixed Level*Autocorrelation*Moving Average*Type of Model 0 
Series Length*fix*Autocorrelation*the*Type of Model 0 
Number of Participants*fix*Autocorrelation*the*Type of Model 0 
Number of Primary Studies*fix*Autocorrelation*the*Type of Model 0 
fix*Error Variance*Autocorrelation*the*Type of Model 0 
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Table A7 
Eta-Squared Values (η2)for the Association of the Design Factors with the CI Width for the Shift in Slope 

 η
2 

Autocorrelation*Type of Model 0.11118 
Number of Primary Studies 0.09697 
Error Variance 0.09252 
Type of Model 0.06687 
Error Variance*Autocorrelation*Type of Model_ca 0.03199 
Error Variance*Type of Model 0.02373 
Number of Participants*fix*Error Variance*Autocorrelation*Type of Model 0.01699 
Autocorrelation 0.01528 
Series Length*Number of Participants*Error Variance*Autocorrelation*Type of Model 0.01513 
Number of Participants*Type of Model 0.0132 
Fixed Level*Error Variance*Autocorrelation*Type of Model 0.01297 
Number of Primary Studies*Error Variance*Moving Average*Type of Model 0.01285 
Series Length*Number of Primary Studies*Error Variance*the*Type of Model 0.01282 
Number of Participants*Autocorrelation*Type of Model 0.01212 
Series Length 0.01211 
Number of Participants*Moving Average*Type of Model 0.01193 
Series Length*Error Variance*Moving Average*Type of Model 0.01192 
Error Variance*Moving Average*Type of Model 0.01189 
Series Length*Number of Participants*Moving Average*Type of Model 0.01187 
Series Length*Number of Participants*Number of Primary Studies*the*Type of Model 0.01179 
Series Length*Number of Primary Studies*Error Variance*Autocorrelation*Type of Model 0.01179 
Number of Participants*Number of Primary Studies*Moving Average*Type of Model 0.01171 
Series Length*Type of Model 0.01168 
Number of Primary Studies*Type of Model 0.01167 
Number of Primary Studies*Error Variance 0.0102 
Number of Participants 0.00919 
Number of Participants*Number of Primary Studies*Error Variance*Autocorrelation*Type 
of Model 0.0081 
Series Length*Number of Primary Studies*Autocorrelation*Type of Model 0.00796 
Series Length*Autocorrelation*Type of Model 0.0077 
Number of Primary Studies*Autocorrelation*Type of Model 0.00762 
Series Length*Number of Participants*Type of Model 0.00755 
Number of Participants*Error Variance*Type of Model 0.00731 
Number of Participants*Fixed Level*Error Variance*Type of Model 0.0069 
Number of Participants*Error Variance*Autocorrelation*Type of Model 0.00679 
Series Length*Number of Primary Studies*Moving Average*Type of Model 0.00655 
Number of Primary Studies*Moving Average*Type of Model 0.00649 
Series Length*Number of Participants*Error Variance*the*Type of Model 0.0063 
Number of Participants*Error Variance*Moving Average*Type of Model 0.00627 
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Table A7 (Continued) 

 η
2 

Number of Primary Studies*fix*Error Variance*Autocorrelation*Type of Model 0.0062 
Number of Participants*Number of Primary Studies*Error Variance*the*Type of Model 0.00618 
Series Length*fix*Error Variance*Autocorrelation*Type of Model 0.00599 
Moving Average*Type of Model 0.00588 
Series Length*Moving Average*Type of Model 0.00584 
Series Length*Number of Primary Studies*Type of Model 0.00576 
Error Variance*Autocorrelation 0.00563 
Number of Participants*Number of Primary Studies*Error Variance*Type of Model 0.00537 
Number of Participants*Number of Primary Studies*Type of Model 0.00517 
Series Length*Number of Participants*Autocorrelation*Type of Model 0.005 
Number of Participants*Number of Primary Studies*fix*Error Variance*Type of Model 0.00459 
Number of Primary Studies*Error Variance*Type of Model 0.00423 
Number of Participants*Number of Primary Studies*fix*Autocorrelation*Type of Model 0.00418 
Series Length*Error Variance*Autocorrelation*Type of Model 0.004144 
Series Length*Number of Participants*Number of Primary Studies*Type of Model 0.004042 
Series Length*Number of Participants*Number of Primary Studies*Autocorrelation*Type of 
Model 0.003828 
Series Length*Error Variance*Type of Model 0.003781 
Number of Participants*Number of Primary Studies*Autocorrelation*Type of Model 0.003736 
Number of Primary Studies*Error Variance*Autocorrelation*Type of Model 0.003489 
Series Length*Number of Participants*fix*Error Variance*Type of Model 0.003118 
Series Length*Number of Participants 0.002905 
Number of Participants*Fixed Level*Error Variance*Autocorrelation 0.002869 
Fixed Level*Error Variance*Type of Model 0.002852 
Series Length*Number of Participants*Number of Primary Studies*Error 
Variance*Autocorrelation 0.002671 
Series Length*Number of Primary Studies 0.002584 
Series Length*Number of Participants*Error Variance*Autocorrelation 0.002504 
Series Length*Number of Primary Studies*fix*Autocorrelation*Type of Model 0.00232 
Fixed Level*Error Variance*Autocorrelation 0.002178 
Series Length*Number of Primary Studies*Error Variance*Moving Average 0.002164 
Number of Primary Studies*Error Variance*Moving Average 0.002123 
Series Length*Number of Participants*Error Variance*Type of Model 0.002067 
Series Length*Error Variance*Moving Average 0.002014 
Number of Participants*Moving Average 0.001995 
Number of Participants*Number of Primary Studies 0.00198 
Series Length*Number of Participants*Number of Primary Studies*Moving Average 0.001978 
Series Length*Number of Participants*Moving Average 0.001973 
Number of Participants*Number of Primary Studies*Moving Average 0.00197 
Series Length*Number of Primary Studies*Error Variance*Autocorrelation 0.001968 
Error Variance*Moving Average 0.001964 



www.manaraa.com

253 

 

Table A7 (Continued) 
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Series Length*Number of Participants*Number of Primary Studies*Error Variance*Type of 
Model 0.001915 
Series Length*Fixed Level*Autocorrelation*Type of Model 0.001864 
Number of Participants*Autocorrelation 0.001695 
Number of Participants*Number of Primary Studies*fix*Error Variance*Autocorrelation 0.00148 
Number of Participants*Error Variance 0.00138 
Number of Participants*Number of Primary Studies*Error Variance*Autocorrelation 0.001351 
Series Length*Number of Primary Studies*Autocorrelation 0.001299 
Number of Primary Studies*Fixed Level*Error Variance*Type of Model 0.00127 
Series Length*Fixed Level*Error Variance*Type of Model 0.001264 
Number of Participants*Error Variance*Autocorrelation 0.001153 
Number of Participants*Fixed Level*Error Variance 0.00113 
Series Length*Number of Primary Studies*Moving Average 0.001126 
Number of Primary Studies*Moving Average 0.001105 
Series Length*Number of Participants*Error Variance*Moving Average 0.001053 
Number of Participants*Error Variance*Moving Average 0.001052 
Number of Primary Studies*Fixed Level*Error Variance*Autocorrelation 0.001041 
Series Length*Number of Participants*Number of Primary Studies*Error Variance*Moving 
Average 0.001035 
Number of Participants*Number of Primary Studies*Error Variance*Moving Average 0.001035 
Number of Primary Studies*Autocorrelation 0.001033 
Series Length*Moving Average 0.001014 
Series Length*Fixed Level*Error Variance*Autocorrelation 0.000991 
Moving Average 0.000986 
Series Length*Number of Participants*Number of Primary Studies 0.000984 
Series Length*Autocorrelation 0.000965 
Series Length*Number of Participants*fix*Error Variance*Autocorrelation 0.000956 
Number of Participants*Number of Primary Studies*Error Variance 0.000949 
Number of Participants*Fixed Level*Autocorrelation*Type of Model 0.000811 
Number of Participants*Number of Primary Studies*Fixed Level*Type of Model 0.0008 
Series Length*Number of Participants*Number of Primary Studies*fix*Error Variance 0.000766 
Series Length*Number of Participants*Autocorrelation 0.000751 
Number of Participants*Number of Primary Studies*Fixed Level*Error Variance 0.000746 
Series Length*Error Variance*Autocorrelation 0.000718 
Number of Participants*Number of Primary Studies*Fixed Level*Autocorrelation 0.000695 
Number of Primary Studies*Fixed Level*Type of Model_ 0.000653 
Series Length*Number of Participants*Number of Primary Studies*Autocorrelation 0.000641 
Number of Primary Studies*Error Variance*Autocorrelation 0.000599 
Number of Participants*Number of Primary Studies*Autocorrelation 0.000579 
Series Length*Number of Participants*Fixed Level*Error Variance 0.000512 
Fixed Level*Error Variance 0.000484 
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Table A7 (Continued) 
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Number of Primary Studies*Fixed Level*Autocorrelation*Type of Model 0.000446 
Number of Participants*Fixed Level*Moving Average*Type of Model 0.000445 
Series Length*Number of Primary Studies*Error Variance*Type of Model 0.00044 
Series Length*Number of Participants*fix*the*Type of Model 0.000439 
Series Length*Number of Primary Studies*Fixed Level*Autocorrelation 0.000384 
Number of Primary Studies*fix*Error Variance*the*Type of Model 0.000364 
Fixed Level*Type of Model 0.000355 
Series Length*Number of Participants*fix*Autocorrelation*Type of Model 0.000353 
Series Length*fix*Error Variance*the*Type of Model 0.000338 
Fixed Level*Autocorrelation*Type of Mode 0.000336 
Fixed Level*Error Variance*Moving Average*Type of Model 0.000327 
Series Length*Fixed Level*Autocorrelation 0.000313 
Number of Participants*Number of Primary Studies*fix*the*Type of Model 0.00028 
Series Length*Number of Participants*Number of Primary Studies*Error Variance 0.000275 
Series Length*Number of Participants*Error Variance 0.000262 
Series Length*Number of Participants*Fixed Level*Type of Model 0.000258 
Series Length*Error Variance 0.000216 
Series Length*Fixed Level*Error Variance 0.000211 
Number of Primary Studies*Fixed Level*Error Variance 0.000209 
Number of Participants*Number of Primary Studies*Fixed Level 0.000141 
Number of Participants*fix*Error Variance*the*Type of Model 0.000138 
Number of Participants*Fixed Level*Autocorrelation 0.000137 
Series Length*Number of Participants*Number of Primary Studies*Fixed 
Level*Autocorrelation 0.000136 
Series Length*Fixed Level*Moving Average*Type of Model 0.000135 
Fixed Level*Moving Average*Type of Model 0.000132 
Number of Primary Studies*Fixed Level*Moving Average*Type of Model 0.000119 
Series Length*Number of Primary Studies*fix*the*Type of Model 0.000117 
Series Length*Number of Participants*Number of Primary Studies*fix*Type of Model 0.000106 
Number of Primary Studies*Fixed Level 0.0001 
Number of Participants*Fixed Level*Moving Average 7.71E-05 
Number of Primary Studies*Fixed Level*Autocorrelation 7.42E-05 
Series Length*Number of Participants*Fixed Level*Moving Average 7.09E-05 
Number of Primary Studies*Fixed Level*Error Variance*Moving Average 6.21E-05 
Series Length*Number of Participants*Fixed Level*Autocorrelation 6.13E-05 
Series Length*Number of Primary Studies*fix*Error Variance*Autocorrelation 6.05E-05 
Series Length*Number of Primary Studies*fix*Error Variance*Moving Average 5.85E-05 
Series Length*Fixed Level*Error Variance*Moving Average 5.73E-05 
Fixed Level 5.69E-05 
Fixed Level*Error Variance*Moving Average 5.64E-05 
Fixed Level*Autocorrelation 5.38E-05 
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Table A7 (Continued) 
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Number of Participants*Number of Primary Studies*Fixed Level*Moving Average 4.93E-05 
Series Length*Number of Participants*Number of Primary Studies*fix*Moving Average 4.6E-05 
Number of Participants*Fixed Level*Type of Model 4.44E-05 
Number of Participants*Number of Primary Studies*fix*Error Variance*Moving Average 4.17E-05 
Series Length*Number of Participants*Fixed Level 4.08E-05 
Series Length*Number of Primary Studies*Error Variance 3.4E-05 
Series Length*Number of Primary Studies*fix*Error Variance*Type of Model 2.84E-05 
Number of Participants*Fixed Level*Error Variance*Moving Average 2.23E-05 
Series Length*Fixed Level*Moving Average 2.07E-05 
Series Length*Number of Participants*fix*Error Variance*Moving Average 2.05E-05 
Fixed Level*Moving Average 2.05E-05 
Series Length*Number of Primary Studies*Fixed Level*Moving Average 1.9E-05 
Series Length*Number of Participants*Number of Primary Studies*Fixed Level 1.9E-05 
Number of Primary Studies*Fixed Level*Moving Average 1.85E-05 
Number of Participants*Fixed Level 9.33E-06 
Series Length*Number of Primary Studies*Fixed Level*Type of Model 7.77E-06 
Series Length*Number of Primary Studies*Fixed Level*Error Variance 5.42E-06 
Series Length*Number of Primary Studies*Fixed Level 1.35E-06 
Series Length*Fixed Level*Type of Model 4.18E-07 
Series Length*Fixed Level 6.1E-08 
Autocorrelation*Moving Average 0 
Series Length*Autocorrelation*Moving Average 0 
Number of Participants*Autocorrelation*Moving Average 0 
Series Length*Number of Participants*Autocorrelation*Moving Average 0 
Number of Primary Studies*Autocorrelation*Moving Average 0 
Series Length*Number of Primary Studies*Autocorrelation*Moving Average 0 
Number of Participants*Number of Primary Studies*Autocorrelation*Moving Average 0 
Series Length*Number of Participants*Number of Primary Studies*Autocorrelation*Moving 
Average 0 
Error Variance*Autocorrelation*Moving Average 0 
Series Length*Error Variance*Autocorrelation*Moving Average 0 
Number of Participants*Error Variance*Autocorrelation*Moving Average 0 
Series Length*Number of Participants*Error Variance*Autocorrelation*Moving Average 0 
Number of Primary Studies*Error Variance*Autocorrelation*Moving Average 0 
Series Length*Number of Primary Studies*Error Variance*Autocorrelation*Moving 
Average 0 
Number of Participants*Number of Primary Studies*Error 
Variance*Autocorrelation*Moving Average 0 
Fixed Level*Autocorrelation*Moving Average 0 
Series Length*Fixed Level*Autocorrelation*Moving Average 0 
Number of Participants*Fixed Level*Autocorrelation*Moving Average 0 
Series Length*Number of Participants*fix*Autocorrelation*Moving Average 0 
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Table A7 (Continued)  

 η2 

Number of Primary Studies*Fixed Level*Autocorrelation*Moving Average 0 
Series Length*Number of Primary Studies*fix*Autocorrelation*Moving Average 0 
Number of Participants*Number of Primary Studies*fix*Autocorrelation*Moving Average 0 
Fixed Level*Error Variance*Autocorrelation*Moving Average 0 
Series Length*fix*Error Variance*Autocorrelation*Moving Average 0 
Number of Participants*fix*Error Variance*Autocorrelation*Moving Average 0 
Number of Primary Studies*fix*Error Variance*Autocorrelation*Moving Average 0 
Autocorrelation*Moving Average*Type of Model 0 
Series Length*Autocorrelation*Moving Average*Type of Model 0 
Number of Participants*Autocorrelation*Moving Average*Type of Model 0 
Series Length*Number of Participants*Autocorrelation*the*Type of Model 0 
Number of Primary Studies*Autocorrelation*Moving Average*Type of Model 0 
Series Length*Number of Primary Studies*Autocorrelation*the*Type of Model 0 
Number of Participants*Number of Primary Studies*Autocorrelation*the*Type of Model 0 
Error Variance*Autocorrelation*Moving Average*Type of Model 0 
Series Length*Error Variance*Autocorrelation*the*Type of Model 0 
Number of Participants*Error Variance*Autocorrelation*the*Type of Model 0 
Number of Primary Studies*Error Variance*Autocorrelation*the*Type of Model 0 
Fixed Level*Autocorrelation*Moving Average*Type of Model 0 
Series Length*fix*Autocorrelation*the*Type of Model 0 
Number of Participants*fix*Autocorrelation*the*Type of Model 0 
Number of Primary Studies*fix*Autocorrelation*the*Type of Model 0 
fix*Error Variance*Autocorrelation*the*Type of Model 0 

Total Explained 0.9457 
 

Table A8 
Eta-Squared Values (η2)for the Association of the Design Factors with the Power Estimates for the Shift 
in Level 

 η
2 

Error Variance 0.30027 
Number of Primary Studies 0.2993 
Number of Primary Studies*Error Variance 0.29828 
Number of Participants 0.02225 
Number of Participants*Number of Primary Studies 0.02225 
Number of Participants*Error Variance 0.02192 
Series Length*Number of Primary Studies 0.00184 
Series Length 0.00179 
Series Length*Error Variance 0.00174 
Number of Primary Studies*Autocorrelation 0.0006 
Error Variance*Autocorrelation 0.00045 
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Table A8 (Continued) 
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Autocorrelation 0.00044 
Series Length*Number of Participants 0.00039 
Autocorrelation*Type of Model 0.0002 
Number of Participants*Moving Average 0.00017 
Type of Model 0.00015 
Series Length*Moving Average 0.00013 
Error Variance*Type of Model 0.00012 
Series Length*Autocorrelation 0.00011 
Number of Participants*Autocorrelation 0.00006 
Number of Primary Studies*Type of Model 0.00005 
Number of Participants*Type of Model 0.00002 
Moving Average 0.00002 
Number of Primary Studies*Moving Average 0.00002 
Error Variance*Moving Average 0.00001 
Series Length*Type of Model 0.00001 
Moving Average*Type of Model 0 
Autocorrelation*Moving Average 0 

Total Explained 0.9726 
 

Table A9 
Eta-Squared Values (η2)for the Association of the Design Factors with the Power Estimates for the Shift 
in Slope 

 η
2 

Number of Primary Studies 0.51153 
Error Variance 0.41569 
Series Length 0.03141 
Number of Participants 0.01529 
Autocorrelation 0.00129 
Type of Model 0.00002 
Moving Average 0.00001 
Total Explained 0.9752 
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Table A10 
Eta-Squared Values (η2 ) for the Association of the Design Factors with the Bias Estimates for the Level-
three Phase Effect 

 η
2 

Error Variance 0.096415 
Number of Primary Studies 0.093087 
Type of Model 0.091423 
Error Variance*Type of Model 0.04376 
Number of Participants 0.042611 
Number of Participants*Number of Primary Studies 0.041102 
Number of Primary Studies*Error Variance 0.034378 
Autocorrelation*Type of Model 0.031906 
Number of Participants*Error Variance 0.02619 
Number of Primary Studies*Fixed Level*Error Variance*Moving Average 0.018903 
Series Length 0.018586 
Series Length*Number of Participants*Number of Primary Studies 0.016809 
Error Variance*Autocorrelation*Type of Model 0.01632 
Autocorrelation 0.016299 
Number of Primary Studies*Fixed Level*Autocorrelation 0.016202 
Series Length*Number of Participants*Autocorrelation 0.015133 
Error Variance*Autocorrelation 0.014939 
Number of Participants*Number of Primary Studies*Moving Average 0.013593 
Series Length*Number of Primary Studies*Fixed Level*Error Variance 0.012667 
Number of Participants*Number of Primary Studies*Fixed Level 0.012435 
Number of Primary Studies*Error Variance*Autocorrelation 0.011813 
Number of Participants*Moving Average 0.010852 
Series Length*Type of Model 0.010326 
Number of Primary Studies*Fixed Level 0.010182 
Series Length*Error Variance 0.009611 
Number of Participants*Fixed Level*Error Variance*Moving Average 0.009564 
Number of Participants*Number of Primary Studies*Autocorrelation 0.009294 
Number of Primary Studies*Fixed Level*Moving Average 0.009152 
Number of Participants*Fixed Level*Autocorrelation 0.008815 
Fixed Level 0.007961 
Number of Participants*Number of Primary Studies*Fixed Level*Moving Average 0.007297 
Series Length*Number of Primary Studies 0.00627 
Number of Primary Studies*Fixed Level*Error Variance 0.00603 
Number of Participants*Number of Primary Studies*Error Variance*Moving Average 0.005729 
Series Length*Number of Primary Studies*Error Variance*Moving Average 0.005603 
Series Length*Number of Primary Studies*Fixed Level 0.00558 
Number of Participants*Type of Model 0.005553 
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Table A10 (Continued) 
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Series Length*Error Variance*Type of Model 0.005291 
Series Length*Number of Primary Studies*Fixed Level*Moving Average 0.005287 
Fixed Level*Error Variance 0.005131 
Series Length*Number of Participants*Number of Primary Studies*Fixed Level 0.004597 
Series Length*Number of Participants 0.004596 
Fixed Level*Error Variance*Moving Average 0.0042 
Series Length*Number of Primary Studies*Error Variance 0.004134 
Series Length*Error Variance*Moving Average 0.004083 
Number of Participants*Number of Primary Studies*Error Variance 0.004025 
Series Length*Fixed Level*Autocorrelation 0.003922 
Number of Participants*Error Variance*Autocorrelation 0.0039 
Number of Participants*Autocorrelation*Type of Model 0.003842 
Number of Participants*Error Variance*Type of Model 0.003828 
Series Length*Number of Participants*Number of Primary Studies*Autocorrelation 0.003815 
Number of Participants*Number of Primary Studies*Fixed Level*Autocorrelation 0.003713 
Series Length*Fixed Level*Error Variance*Autocorrelation 0.003572 
Series Length*Autocorrelation*Type of Model 0.003385 
Number of Primary Studies*Fixed Level*Error Variance*Autocorrelation 0.003128 
Series Length*Error Variance*Autocorrelation 0.003094 
Series Length*Number of Participants*Fixed Level 0.003053 
Series Length*Number of Primary Studies*Autocorrelation 0.002959 
Series Length*Autocorrelation 0.002831 
Series Length*Number of Participants*Error Variance*Autocorrelation 0.002515 
Series Length*Moving Average 0.002417 
Number of Participants*Number of Primary Studies*Fixed Level*Error Variance 0.002409 
Series Length*Number of Primary Studies*Error Variance*Autocorrelation 0.002364 
Number of Participants*Fixed Level*Error Variance 0.002323 
Fixed Level*Autocorrelation 0.002187 
Number of Participants*Number of Primary Studies*Error Variance*Autocorrelation 0.002022 
Number of Primary Studies*Autocorrelation 0.001915 
Moving Average 0.001882 
Number of Primary Studies*Moving Average 0.00176 
Series Length*Number of Primary Studies*Fixed Level*Autocorrelation 0.001723 
Number of Participants*Autocorrelation 0.001558 
Number of Primary Studies*Error Variance*Moving Average 0.001348 
Fixed Level*Moving Average 0.001296 
Series Length*Number of Participants*Number of Primary Studies*Moving Average 0.001221 
Series Length*Error Variance*Autocorrelation*fixed 0.00116 
Number of Participants*Error Variance*Autocorrelation*fixed 0.001109 
Number of Participants*Error Variance*Moving Average 0.001084 
Series Length*Number of Participants*Type of Model 0.001073 
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Table A10 (Continued) 
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Error Variance*Moving Average 0.001061 
Number of Participants*Fixed Level*Moving Average 0.001009 
Fixed Level*Error Variance*Autocorrelation*fixed 0.000917 
Fixed Level*Error Variance*Autocorrelation 0.000902 
Series Length*Number of Participants*Fixed Level*Moving Average 0.000829 
Number of Primary Studies*Error Variance*Type of Model 0.000811 
Series Length*Number of Participants*Error Variance*Moving Average 0.000753 
Number of Participants*Number of Primary Studies*Autocorrelation*fixed 0.000705 
Series Length*Fixed Level*Error Variance*Moving Average 0.000686 
Series Length*Fixed Level*Moving Average 0.000674 
Series Length*Number of Participants*Moving Average 0.000651 
Number of Participants*Fixed Level 0.000629 
Number of Participants*Fixed Level*Error Variance*Autocorrelation 0.000556 
Number of Participants*Number of Primary Studies*Type of Model 0.000511 
Series Length*Number of Primary Studies*Moving Average 0.000479 
Series Length*Number of Participants*Fixed Level*Error Variance 0.000475 
Number of Participants*Fixed Level*Autocorrelation*fixed 0.000412 
Series Length*Number of Participants*Number of Primary Studies*Error Variance 0.000389 
Series Length*Number of Primary Studies*Autocorrelation*fixed 0.000351 
Number of Primary Studies*Autocorrelation*Type of Model 0.000339 
Number of Primary Studies*Fixed Level*Type of Model 0.000328 
Number of Primary Studies*Error Variance*Moving Average*fixed 0.000315 
Number of Primary Studies*Type of Model 0.000303 
Number of Primary Studies*Moving Average*Type of Model 0.000256 
Total Explained 0.9465 
 

Table A11 
Eta-Squared Values (η2) for the Association of the Design Factors with the Bias Estimates for the Level-
three Interaction Effect 

 η
2 

Type of Model 0.14873 
Series Length 0.11207 
Series Length*Type of Model 0.06868 
Error Variance 0.05991 
Autocorrelation*Type of Model 0.05601 
Error Variance*Type of Model 0.04917 
Series Length*Error Variance 0.04066 
Number of Participants 0.03706 
Number of Primary Studies 0.0361 
Series Length*Number of Primary Studies 0.03274 
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Table A11 (Continued) 
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Series Length*Autocorrelation*Type of Model 0.03112 
Error Variance*Autocorrelation*Type of Model 0.02632 
Number of Participants*Number of Primary Studies 0.02151 
Number of Participants*Error Variance 0.02102 
Series Length*Number of Participants 0.02091 
Series Length*Error Variance*Type of Model 0.02022 
Autocorrelation 0.01911 
Series Length*Number of Primary Studies*Error Variance 0.01439 
Number of Primary Studies*Error Variance 0.01277 
Series Length*Number of Participants*Error Variance 0.01165 
Series Length*Number of Participants*Number of Primary Studies 0.01122 
Number of Participants*Number of Primary Studies*Error Variance 0.01001 
Series Length*Autocorrelation 0.00375 
Number of Primary Studies*Autocorrelation 0.00365 
Series Length*Number of Participants*Autocorrelation 0.0034 
Error Variance*Autocorrelation 0.00339 
Number of Participants*Fixed Level 0.0033 
Series Length*Number of Primary Studies*Autocorrelation 0.00322 
Number of Primary Studies*Moving Average 0.00311 
Series Length*Moving Average 0.00288 
Number of Primary Studies*Error Variance*Autocorrelation 0.00286 
Series Length*Error Variance*Autocorrelation 0.00276 
Number of Participants*Number of Primary Studies*Autocorrelation 0.00237 
Number of Participants*Number of Primary Studies*Moving Average 0.00233 
Series Length*Error Variance*Moving Average 0.00232 
Number of Participants*Type of Model 0.00212 
Number of Participants*Number of Primary Studies*Fixed Level 0.00211 
Number of Primary Studies*Fixed Level 0.00206 
Series Length*Number of Primary Studies*Type of Model 0.00198 
Series Length*Number of Primary Studies*Moving Average 0.00187 
Number of Primary Studies*Type of Model 0.00173 
Number of Participants*Number of Primary Studies*Type of Model 0.00172 
Fixed Level*Error Variance*Autocorrelation 0.00169 
Number of Participants*Autocorrelation*Type of Model 0.00157 
Number of Primary Studies*Error Variance*Moving Average 0.00155 
Number of Primary Studies*Error Variance*Type of Model 0.00137 
Number of Participants*Fixed Level*Autocorrelation 0.00132 
Series Length*Fixed Level*Autocorrelation 0.00129 
Number of Participants*Fixed Level*Error Variance 0.00124 
Fixed Level*Autocorrelation 0.00122 
Number of Primary Studies*Autocorrelation*Type of Model 0.00121 
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Table A11 (Continued) 
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 Series Length*Fixed Level*Moving Average 0.001182 
Fixed Level*Moving Average 0.00116 
Fixed Level*Error Variance*Moving Average 0.000989 
Series Length*Number of Primary Studies*Fixed Level 0.000957 
Error Variance*Moving Average 0.000894 
Number of Primary Studies*Fixed Level*Autocorrelation 0.000706 
Number of Participants*Error Variance*Moving Average 0.000682 
Series Length*Number of Participants*Fixed Level 0.000608 
Series Length*Number of Participants*Moving Average 0.000412 
Series Length*Fixed Level*Error Variance 0.000369 
Series Length*Number of Participants*Type of Model 0.000364 
Number of Participants*Autocorrelation 0.000302 
Number of Participants*Error Variance*Autocorrelation 0.000247 
Number of Participants*Moving Average 0.000199 
Number of Participants*Error Variance*Type of Model 0.000195 
Number of Participants*Fixed Level*Moving Average 0.000183 
Fixed Level*Moving Average*Type of Model 0.000119 
Fixed Level*Error Variance 0.000118 
Number of Primary Studies*Fixed Level*Moving Average 0.000108 
Number of Primary Studies*Fixed Level*Type of Model 9.86E-05 
Fixed Level 7.97E-05 
Fixed Level*Type of Model 6.24E-05 
Fixed Level*Autocorrelation*Type of Model 5.91E-05 
Series Length*Moving Average*Type of Model 5.08E-05 
Fixed Level*Error Variance*Type of Model 5.07E-05 
Number of Participants*Moving Average*Type of Model 4.11E-05 
Error Variance*Moving Average*Type of Model 2.94E-05 
Number of Primary Studies*Moving Average*Type of Model 2.37E-05 
Series Length*Fixed Level*Type of Model 2.16E-05 
Number of Primary Studies*Fixed Level*Error Variance 1.99E-05 
Number of Participants*Fixed Level*Type of Model 1.86E-05 
Moving Average*Type of Model 1.6E-05 
Moving Average 6.91E-06 
Series Length*Fixed Level 5.14E-06 
Autocorrelation*Moving Average 0 
Series Length*Autocorrelation*Moving Average 0 
Number of Participants*Autocorrelation*Moving Average 0 
Number of Primary Studies*Autocorrelation*Moving Average 0 
Error Variance*Autocorrelation*Moving Average 0 
Fixed Level*Autocorrelation*Moving Average 0 
Autocorrelation*Moving Average*Type of Model 0 
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Total Explained 0.9371 
 

Table A12 
Eta-Squared Values (η2)for the Association of the Design Factors with the Bias Estimates for the Level-
two Phase Effect 

 η
2 

Type of Model 0.55782 
Autocorrelation*Type of Model 0.22198 
Error Variance*Autocorrelation 0.04332 
Error Variance*Type of Model 0.04332 
Error Variance*Autocorrelation*Type of Model 0.0431 
Autocorrelation 0.04129 
Series Length*Error Variance 0.00251 
Number of Primary Studies*Fixed Level*Moving Average 0.00238 
Series Length*Number of Primary Studies 0.00191 
Number of Participants*Error Variance 0.00184 
Fixed Level*Error Variance 0.00151 
Number of Participants*Fixed Level*Autocorrelation 0.00142 
Fixed Level 0.00116 
Series Length*Fixed Level*Moving Average 0.0011 
Series Length*Number of Participants 0.00107 
Number of Participants*Fixed Level*Error Variance 0.00106 
Fixed Level*Error Variance*Autocorrelation 0.00099 
Fixed Level*Autocorrelation 0.00085 
Error Variance*Moving Average 0.00082 
Number of Participants*Fixed Level 0.00082 
Series Length*Autocorrelation*Type of Model 0.00076 
Number of Participants*Number of Primary Studies 0.00065 
Series Length*Error Variance*Autocorrelation 0.00063 
Number of Primary Studies*Error Variance 0.00062 
Fixed Level*Error Variance*Moving Average 0.00057 
Series Length*Number of Participants*Moving Average 0.00054 
Number of Participants*Number of Primary Studies*Moving Average 0.00052 
Number of Participants*Moving Average*Type of Model 0.0005 
Series Length*Fixed Level 0.00049 
Series Length*Number of Primary Studies*Autocorrelation 0.00048 
Number of Primary Studies*Moving Average 0.00048 
Number of Primary Studies*Autocorrelation 0.00046 
Fixed Level*Moving Average*Type of Model 0.00043 
Moving Average*Type of Model 0.00039 
Number of Participants*Error Variance*Autocorrelation 0.00039 
Number of Primary Studies*Autocorrelation*Type of Model 0.00039 
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Table A12 (Continued) 
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Series Length*Number of Participants*Type of Model 0.00037 
Number of Participants*Autocorrelation 0.00036 
Number of Participants*Number of Primary Studies*Autocorrelation 0.00035 
Number of Participants*Fixed Level*Moving Average 0.00035 
Number of Participants*Autocorrelation*Type of Model 0.00034 
Number of Primary Studies*Error Variance*Type of Model 0.00033 
Number of Participants*Error Variance*Type of Model 0.00031 
Series Length*Fixed Level*Autocorrelation 0.00029 
Number of Primary Studies*Error Variance*Autocorrelation 0.00027 
Series Length*Type of Model 0.00027 
Number of Participants*Number of Primary Studies*Type of Model 0.00027 
Moving Average 0.00025 
Number of Participants*Error Variance*Moving Average 0.00024 
Series Length*Number of Participants*Fixed Level 0.00023 
Number of Primary Studies*Moving Average*Type of Model 0.00023 
Number of Primary Studies*Type of Model 0.000217 
Fixed Level*Moving Average 0.000217 
Number of Primary Studies*Error Variance*Moving Average 0.000216 
Number of Participants*Number of Primary Studies*Fixed Level 0.000216 
Fixed Level*Error Variance*Type of Model 0.000185 
Series Length*Autocorrelation 0.000182 
Fixed Level*Autocorrelation*Type of Model 0.000173 
Error Variance*Moving Average*Type of Model 0.00017 
Series Length*Moving Average*Type of Model 0.000167 
Number of Participants*Moving Average 0.000165 
Fixed Level*Type of Model 0.000157 
Series Length 0.000148 
Series Length*Number of Participants*Error Variance 0.000139 
Number of Participants*Fixed Level*Type of Model 0.000127 
Number of Participants*Number of Primary Studies*Error Variance 0.000119 
Series Length*Number of Primary Studies*Moving Average 0.000103 
Series Length*Fixed Level*Error Variance 0.000101 
Number of Participants*Type of Model 9.7E-05 
Series Length*Error Variance*Type of Model 9.67E-05 
Series Length*Number of Primary Studies*Type of Model 8.87E-05 
Number of Primary Studies*Fixed Level*Type of Model 7.72E-05 
Series Length*Number of Participants*Autocorrelation 6.92E-05 
Number of Primary Studies 6.42E-05 
Series Length*Fixed Level*Type of Model 5.55E-05 
Series Length*Number of Participants*Number of Primary Studies 4.84E-05 
Series Length*Moving Average 4.66E-05 
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Table A12 (Continued) 

 η
2 

Number of Primary Studies*Fixed Level*Autocorrelation 3.32E-05 

Number of Primary Studies*Fixed Level*Error Variance 3.05E-05 
Series Length*Error Variance*Moving Average 2.14E-05 
Error Variance 9.18E-06 
Number of Primary Studies*Fixed Level 2.93E-06 
Series Length*Number of Primary Studies*Fixed Level 1.5E-06 
Number of Participants 9.9E-07 
Series Length*Number of Primary Studies*Error Variance 5.59E-07 
Autocorrelation*Moving Average 0 
Series Length*Autocorrelation*Moving Average 0 
Number of Participants*Autocorrelation*Moving Average 0 
Number of Primary Studies*Autocorrelation*Moving Average 0 
Error Variance*Autocorrelation*Moving Average 0 
Fixed Level*Autocorrelation*Moving Average 0 
Autocorrelation*Moving Average*Type of Model 0 

Total Explained 0.9866 
 

Table A13 
Eta-Squared Values (η2) for the Association of the Design Factors with the Bias Estimates for the Level-
two Interaction Effect 

 η
2 

Type of Model 0.44809 
Autocorrelation*Type of Model 0.19139 
Series Length*Error Variance*Autocorrelation 0.06297 
Series Length*Error Variance*Type of Model 0.05562 
Autocorrelation 0.0304 
Series Length*Autocorrelation*Type of Model 0.02342 
Series Length*Type of Model 0.01366 
Series Length*Number of Participants*Error Variance 0.01311 
Series Length*Number of Primary Studies*Error Variance 0.0127 
Series Length*Number of Primary Studies 0.01141 
Error Variance*Autocorrelation*Type of Model 0.01079 
Series Length*Number of Participants 0.00956 
Number of Primary Studies*Error Variance 0.00908 
Number of Participants*Error Variance 0.00838 
Series Length*Number of Participants*Number of Primary Studies 0.00749 
Series Length*Error Variance 0.00692 
Error Variance*Type of Model 0.0065 
Series Length*Number of Primary Studies*Autocorrelation 0.00506 
Number of Primary Studies*Autocorrelation 0.00489 
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Table A13 (Continued) 

 η
2 

Number of Primary Studies 0.00334 
Number of Primary Studies*Type of Model 0.00306 
Number of Participants*Number of Primary Studies 0.00306 
Error Variance*Autocorrelation 0.00303 
Number of Participants*Number of Primary Studies*Error Variance 0.00269 
Number of Participants 0.00258 
Series Length*Autocorrelation 0.00246 
Fixed Level*Autocorrelation 0.00201 
Number of Primary Studies*Error Variance*Autocorrelation 0.00201 
Number of Participants*Error Variance*Autocorrelation 0.00147 
Number of Primary Studies*Autocorrelation*Type of Model 0.00143 
Number of Participants*Fixed Level*Error Variance 0.00139 
Number of Participants*Type of Model 0.00129 
Series Length*Number of Primary Studies*Type of Model 0.00125 
Series Length*Number of Participants*Autocorrelation 0.00118 
Number of Participants*Number of Primary Studies*Autocorrelation 0.0011 
Number of Participants*Autocorrelation 0.0011 
Error Variance 0.00109 
Fixed Level 0.00095 
Moving Average 0.00088 
Fixed Level*Moving Average 0.00076 
Series Length*Fixed Level*Moving Average 0.00069 
Series Length*Number of Participants*Type of Model 0.00066 
Number of Participants*Autocorrelation*Type of Model 0.00058 
Number of Participants*Number of Primary Studies*Type of Model 0.00046 
Series Length*Number of Primary Studies*Moving Average 0.00044 
Series Length 0.00042 
Number of Primary Studies*Fixed Level*Autocorrelation 0.00039 
Series Length*Fixed Level*Autocorrelation 0.00036 
Series Length*Moving Average 0.00036 
Series Length*Number of Participants*Moving Average 0.00025 
Number of Primary Studies*Fixed Level*Moving Average 0.00025 
Number of Primary Studies*Error Variance*Moving Average 0.000235 
Number of Primary Studies*Fixed Level 0.000231 
Number of Participants*Fixed Level*Autocorrelation 0.0002 
Number of Primary Studies*Error Variance*Type of Model 0.000197 
Number of Primary Studies*Moving Average 0.000192 
Number of Participants*Moving Average 0.000178 
Number of Participants*Number of Primary Studies*Fixed Level 0.000167 
Fixed Level*Error Variance*Moving Average 0.000166 
Fixed Level*Error Variance*Autocorrelation 0.000162 
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Table A13 (Continued) 
 

 η
2 

Series Length*Fixed Level*Error Variance 0.000113 
Number of Participants*Number of Primary Studies*Moving Average 9.52E-05 
Number of Primary Studies*Fixed Level*Error Variance 8.31E-05 
Series Length*Error Variance*Moving Average 7.62E-05 
Number of Participants*Fixed Level*Moving Average 6.69E-05 
Number of Participants*Error Variance*Type of Model 6.2E-05 
Series Length*Number of Participants*Fixed Level 5.39E-05 
Number of Participants*Fixed Level 4.88E-05 
Number of Participants*Error Variance*Moving Average 4.27E-05 
Error Variance*Moving Average 2.77E-05 
Fixed Level*Error Variance*Type of Model 2.11E-05 
Number of Participants*Fixed Level*Type of Model 2.02E-05 
Fixed Level*Moving Average*Type of Model 1.8E-05 
Fixed Level*Autocorrelation*Type of Model 1.67E-05 
Number of Primary Studies*Moving Average*Type of Model 1.53E-05 
Moving Average*Type of Model 1.33E-05 
Series Length*Fixed Level*Type of Model 1.04E-05 
Number of Primary Studies*Fixed Level*Type of Model 1.04E-05 
Number of Participants*Moving Average*Type of Model 1.01E-05 
Error Variance*Moving Average*Type of Model 8.5E-06 
Series Length*Moving Average*Type of Model 8.07E-06 
Fixed Level*Type of Model 6.65E-06 
Fixed Level*Error Variance 1.67E-06 
Series Length*Fixed Level 1.25E-07 
Series Length*Number of Primary Studies*Fixed Level 1.1E-07 
Autocorrelation*Moving Average 0 
Series Length*Autocorrelation*Moving Average 0 
Number of Participants*Autocorrelation*Moving Average 0 
Number of Primary Studies*Autocorrelation*Moving Average 0 
Error Variance*Autocorrelation*Moving Average 0 
Fixed Level*Autocorrelation*Moving Average 0 
Autocorrelation*Moving Average*Type of Model 0 

Total Explained 0.9770 
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Table A14 
Eta-Squared Values (η2) for the Association of the Design Factors with the Bias Estimates for the 
Autocorrelation Parameter 

 η
2 

Autocorrelation*Type of Model 0.24284 
Error Variance*Autocorrelation*Type of Model 0.12234 
Error Variance*Type of Model 0.08035 
Type of Model 0.07695 
Error Variance*Autocorrelation 0.06308 
Autocorrelation 0.06018 
Error Variance 0.05549 
Series Length 0.03203 
Series Length*Autocorrelation*Type of Model 0.03044 
Series Length*Type of Model 0.02916 
Series Length*Error Variance*Autocorrelation 0.01736 
Series Length*Autocorrelation 0.01645 
Number of Primary Studies*Autocorrelation*Type of Model 0.01219 
Number of Primary Studies*Autocorrelation 0.01033 
Number of Primary Studies*Error Variance*Type of Model 0.00951 
Number of Participants*Error Variance*Type of Model 0.00899 
Number of Primary Studies*Error Variance 0.00782 
Series Length*Error Variance*Type of Model 0.00753 
Series Length*Number of Primary Studies 0.00679 
Number of Participants*Error Variance 0.00605 
Series Length*Number of Primary Studies*Type of Model 0.00393 
Number of Primary Studies*Type of Model 0.00364 
Number of Participants*Autocorrelation*Type of Model 0.00346 
Series Length*Number of Primary Studies*Autocorrelation 0.00341 
Series Length*Number of Participants 0.00338 
Number of Participants*Autocorrelation 0.00333 
Number of Primary Studies*Error Variance*Autocorrelation 0.0029 
Number of Participants*Error Variance*Autocorrelation 0.00276 
Series Length*Number of Participants*Autocorrelation 0.00191 
Series Length*Number of Participants*Number of Primary Studies 0.0018 
Series Length*Number of Participants*Type of Model 0.00159 
Series Length*Error Variance 0.00151 
Number of Participants*Number of Primary Studies*Autocorrelation 0.0013 
Number of Participants*Type of Model 0.00129 
Number of Participants*Number of Primary Studies 0.00094 
Number of Participants*Number of Primary Studies*Type of Model 0.00078 
Number of Participants 0.00063 
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Table A14 (Continued) 
 

 η
2 

Number of Primary Studies 0.00042 
Number of Participants*Fixed Level*Autocorrelation 0.00034 
Fixed Level*Autocorrelation*Type of Model 0.00027 
Number of Participants*Number of Primary Studies*Error Variance 0.00022 
Number of Participants*Error Variance*Moving Average 0.00017 
Fixed Level*Autocorrelation 0.00017 
Fixed Level*Error Variance*Moving Average 0.00015 
Series Length*Number of Participants*Error Variance 0.00012 
Series Length*Number of Participants*Fixed Level 0.00012 
Series Length*Fixed Level*Type of Model 0.00011 
Fixed Level*Moving Average 0.00011 
Series Length*Fixed Level*Moving Average 0.00008 
Series Length*Fixed Level*Error Variance 0.00008 
Number of Participants*Number of Primary Studies*Moving Average 0.00007 
Number of Participants*Moving Average 6.23E-05 
Fixed Level*Error Variance*Autocorrelation 4.63E-05 
Moving Average 4.59E-05 
Series Length*Error Variance*Moving Average 4.5E-05 
Number of Primary Studies*Fixed Level*Error Variance 4.45E-05 
Number of Primary Studies*Fixed Level*Autocorrelation 4.33E-05 
Number of Primary Studies*Fixed Level*Moving Average 3.96E-05 
Error Variance*Moving Average 3.29E-05 
Number of Primary Studies*Moving Average 2.89E-05 
Number of Participants*Moving Average*Type of Model 2.54E-05 
Number of Participants*Fixed Level*Moving Average 2.44E-05 
Fixed Level*Moving Average*Type of Model 2.31E-05 
Number of Participants*Number of Primary Studies*Fixed Level 2.22E-05 
Number of Primary Studies*Moving Average*Type of Model 2.15E-05 
Series Length*Fixed Level 1.74E-05 
Series Length*Number of Primary Studies*Moving Average 1.71E-05 
Series Length*Number of Participants*Moving Average 1.64E-05 
Moving Average*Type of Model 1.47E-05 
Number of Participants*Fixed Level*Error Variance 1.28E-05 
Series Length*Moving Average 1.13E-05 
Series Length*Moving Average*Type of Model 1.09E-05 
Fixed Level*Error Variance*Type of Model 9.86E-06 
Fixed Level 6.63E-06 
Error Variance*Moving Average*Type of Model 5.6E-06 
Fixed Level*Type of Model 5.09E-06 
Series Length*Number of Primary Studies*Fixed Level 4.76E-06 
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Table A14 (Continued) 

 η
2 

Number of Primary Studies*Fixed Level*Type of Model 4.46E-06 
Series Length*Fixed Level*Autocorrelation 2.9E-06 
Number of Primary Studies*Fixed Level 2.63E-06 

Number of Participants*Fixed Level 2.13E-06 
Number of Participants*Fixed Level*Type of Model 2.08E-06 
Number of Primary Studies*Error Variance*Moving Average 1.83E-06 
Fixed Level*Error Variance 4.26E-07 
Series Length*Number of Primary Studies*Error Variance 2.16E-07 
Autocorrelation*Moving Average 0 
Series Length*Autocorrelation*Moving Average 0 
Number of Participants*Autocorrelation*Moving Average 0 
Number of Primary Studies*Autocorrelation*Moving Average 0 
Error Variance*Autocorrelation*Moving Average 0 
Fixed Level*Autocorrelation*Moving Average 0 
Autocorrelation*Moving Average*Type of Model 0 

Total Explained 0.9375 
 
Table A15 
Eta-Squared Values (η2) for the Association of the Design Factors with the Bias Estimates for the 
Autocorrelation Parameter 

 η
2 

Moving Average 0.60692 
Type of Model 0.27378 
Autocorrelation 0.05027 
Error Variance 0.00217 
Number of Primary Studies 0.00176 
Series Length 0.00071 
Number of Participants 0.00049 
Fixed Level 0 
Total Explained 0.9361 
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Table A16 
Eta-Squared Values (η2) for the Association of the Design Factors with the RMSE Values for the Level-
three Phase Effect 

 η
2 

Error Variance 0.70311 
Number of Primary Studies 0.2014 
Number of Participants 0.02262 
Series Length 0.00304 
Autocorrelation 0.00018 
Type of Model 0.00003 
Moving Average 0.00002 
Fixed Level 0 

Total Explained 0.9304 
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Table A17 
Eta-Squared Values (η2) for the Association of the Design Factors with the RMSE Values for the Level-
three Interaction Effect 

 η
2 

Error Variance 0.66677 
Number of Primary Studies 0.1979 
Number of Primary Studies*Error Variance 0.05293 
Series Length 0.03996 
Number of Participants 0.02858 
Number of Participants*Error Variance 0.00361 
Series Length*Number of Participants 0.00326 
Autocorrelation 0.00157 
Number of Participants*Number of Primary Studies 0.00113 
Series Length*Error Variance 0.001 
Series Length*Number of Primary Studies 0.00071 
Series Length*Autocorrelation 0.0003 
Number of Participants*Autocorrelation 0.00029 
Number of Primary Studies*Autocorrelation 0.00011 
Error Variance*Autocorrelation 0.00006 
Autocorrelation*Type of Model 0.00003 
Type of Model 0.00003 
Series Length*Fixed Level 0.00002 
Series Length*Type of Model 0.00002 
Fixed Level*Error Variance 0.00001 
Number of Participants*Moving Average 0.00001 
Series Length*Moving Average 0.00001 
Fixed Level*Autocorrelation 0 
Number of Participants*Type of Model 0 
Moving Average 0 
Error Variance*Type of Model 0 
Error Variance*Moving Average 0 
Fixed Level 0 
Number of Participants*Fixed Level 0 
Number of Primary Studies*Type of Model 0 
Fixed Level*Type of Model 0 
Moving Average*Type of Model 0 
Fixed Level*Moving Average 0 
Number of Primary Studies*Fixed Level 0 
Number of Primary Studies*Moving Average 0 
Autocorrelation*Moving Average 0 

Total Explained 0.9983 
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Table A18 
Eta-Squared Values (η2) for the Association of the Design Factors with the RMSE Values for the Level-
two Phase Effect 

 η
2 

Error Variance 0.4326 
Number of Primary Studies 0.222 
Number of Participants 0.12348 
Type of Model 0.04868 
Autocorrelation*Type of Model 0.03792 
Number of Primary Studies*Error Variance 0.02838 
Number of Participants*Error Variance 0.02444 
Autocorrelation 0.01483 
Series Length 0.00974 
Number of Participants*Number of Primary Studies 0.00554 
Series Length*Autocorrelation 0.00209 
Series Length*Number of Participants 0.00202 
Series Length*Error Variance 0.00128 
Number of Primary Studies*Type of Model 0.00113 
Series Length*Type of Model 0.00095 
Number of Participants*Autocorrelation 0.00068 
Number of Participants*Type of Model 0.00061 
Error Variance*Type of Model 0.00048 
Fixed Level 0.0004 
Moving Average*Type of Model 0.00037 
Fixed Level*Autocorrelation 0.00034 
Error Variance*Autocorrelation 0.00033 
Fixed Level*Type of Model 0.0002 
Number of Primary Studies*Autocorrelation 0.00018 
Error Variance*Moving Average 0.00015 
Moving Average 0.00011 
Number of Participants*Moving Average 0.00008 
Fixed Level*Moving Average 0.00005 
Series Length*Moving Average 0.00005 
Number of Participants*Fixed Level 0.00004 
Series Length*Fixed Level 0.00004 
Number of Primary Studies*Moving Average 0.00004 
Number of Primary Studies*Fixed Level 0.00002 
Series Length*Number of Primary Studies 0.00001 
Fixed Level*Error Variance 0 
Autocorrelation*Moving Average 0 

Total Explained 0.9593 
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Table A19 
Eta-Squared Values (η2) for the Association of the Design Factors with the RMSE Values for the Level-
two Interaction Effect 

 η
2 

Error Variance 0.34932 
Series Length 0.25701 
Number of Primary Studies 0.12644 
Number of Participants 0.07658 
Type of Model 0.03065 
Number of Primary Studies*Error Variance 0.02454 
Autocorrelation 0.02302 
Autocorrelation*Type of Model 0.02286 
Series Length*Error Variance 0.0201 
Number of Participants*Error Variance 0.01497 
Series Length*Type of Model 0.01144 
Series Length*Number of Primary Studies 0.0082 
Series Length*Number of Participants 0.00653 
Series Length*Autocorrelation 0.00533 
Number of Participants*Number of Primary Studies 0.00423 
Error Variance*Autocorrelation 0.00133 
Number of Primary Studies*Type of Model 0.00074 
Error Variance*Type of Model 0.00041 
Number of Participants*Type of Model 0.00033 
Number of Participants*Autocorrelation 0.00011 
Number of Primary Studies*Autocorrelation 0.00009 
Fixed Level 0.00004 
Number of Primary Studies*Fixed Level 0.00001 
Number of Participants*Moving Average 0.00001 
Moving Average 0.00001 
Error Variance*Moving Average 0.00001 
Fixed Level*Moving Average 0.00001 
Fixed Level*Autocorrelation 0 
Series Length*Moving Average 0 
Moving Average*Type of Model 0 
Series Length*Fixed Level 0 
Fixed Level*Error Variance 0 
Number of Participants*Fixed Level 0 
Number of Primary Studies*Moving Average 0 
Fixed Level*Type of Model 0 
Autocorrelation*Moving Average 0 

Total Explained 0.9843 
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Table A20 
Eta-Squared Values (η2) for the Association of the Design Factors with the RMSE Values for the Level-
one Variance 

 η
2 

Type of Model 0.20268 
Error Variance 0.17296 
Error Variance*Type of Model 0.10587 
Autocorrelation*Type of Model 0.0703 
Series Length 0.06046 
Number of Primary Studies 0.05264 
Error Variance*Autocorrelation*Type of Model 0.05095 
Autocorrelation 0.04265 
Error Variance*Autocorrelation 0.03552 
Series Length*Autocorrelation 0.02984 
Number of Participants 0.02013 
Number of Primary Studies*Type of Model 0.01596 
Number of Primary Studies*Error Variance 0.01467 
Series Length*Error Variance 0.01364 
Series Length*Error Variance*Autocorrelation 0.01362 
Series Length*Autocorrelation*Type of Model 0.01164 
Number of Primary Studies*Error Variance*Type of Model 0.00925 
Series Length*Error Variance*Autocorrelation*Type of Model 0.00789 
Number of Participants*Error Variance 0.00697 
Number of Participants*Type of Model 0.00659 
Series Length*Type of Model 0.00602 
Series Length*Number of Primary Studies 0.00525 
Series Length*Error Variance*Type of Model 0.00481 
Number of Participants*Error Variance*Type of Model 0.004 
Series Length*Number of Participants 0.00316 
Number of Primary Studies*Autocorrelation 0.00266 
Series Length*Number of Primary Studies*Autocorrelation 0.00259 
Series Length*Number of Primary Studies*Type of Model 0.00203 
Number of Primary Studies*Autocorrelation*Type of Model 0.00201 
Series Length*Number of Primary Studies*Error Variance 0.00196 
Series Length*Number of Primary Studies*Error Variance*Autocorrelation 0.00174 
Number of Participants*Autocorrelation 0.00151 
Number of Primary Studies*Error Variance*Autocorrelation 0.00146 
Number of Participants*Number of Primary Studies 0.00104 
Series Length*Number of Primary Studies*Autocorrelation*Type of Model 0.00103 
Number of Primary Studies*Error Variance*Autocorrelation*Type of Model 0.00103 
Series Length*Number of Participants*Error Variance*Autocorrelation 0.00093 
Number of Participants*Autocorrelation*Type of Model 0.00092 
Series Length*Number of Participants*Autocorrelation 0.00086 
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Table A20 (Continued) 

 η
2 

Series Length*Number of Primary Studies*Error Variance*Type of Model 0.00083 
Series Length*Number of Participants*Type of Model 0.00079 
Series Length*Number of Participants*Number of Primary Studies*Autocorrelation 0.00072 
Series Length*Number of Participants*Error Variance 0.0007 
Series Length*Number of Participants*Autocorrelation*Type of Model 0.00047 
Number of Participants*Error Variance*Autocorrelation*Type of Model 0.00042 
Number of Participants*Number of Primary Studies*Autocorrelation 0.00038 
Number of Participants*Error Variance*Autocorrelation 0.00033 
Number of Participants*Number of Primary Studies*Error Variance 0.00031 
Number of Participants*Number of Primary Studies*Type of Model 0.0003 
Series Length*Number of Participants*Error Variance*Type of Model 0.00027 
Series Length*Number of Participants*Number of Primary Studies*Error Variance 0.00018 
Series Length*Number of Participants*Number of Primary Studies*Type of Model 0.000155 
Number of Participants*Number of Primary Studies*Error Variance*Type of Model 0.000147 
Number of Participants*Number of Primary Studies*Autocorrelation*Type of Model 0.000145 
Series Length*Number of Participants*Number of Primary Studies 0.000139 
Number of Participants*Number of Primary Studies*Error Variance*Autocorrelation 9.9E-05 
Series Length*Number of Primary Studies*Fixed Level*Autocorrelation 9.09E-05 
Series Length*Number of Participants*Fixed Level*Autocorrelation 8.57E-05 
Number of Primary Studies*Fixed Level*Autocorrelation*Type of Model 5.22E-05 
Number of Participants*Number of Primary Studies*Fixed Level*Error Variance 4.97E-05 
Number of Participants*Number of Primary Studies*Fixed Level*Autocorrelation 4.6E-05 
Number of Participants*Moving Average 4.46E-05 
Series Length*Fixed Level*Error Variance*Autocorrelation 4.16E-05 
Number of Participants*Number of Primary Studies*Error Variance*Moving 
Average 4.15E-05 
Series Length*Number of Primary Studies*Error Variance*Moving Average 4.03E-05 
Number of Primary Studies*Fixed Level 3.87E-05 
Series Length*Number of Participants*Moving Average 3.85E-05 
Moving Average*Type of Model 3.83E-05 
Series Length*Fixed Level*Error Variance*Moving Average 3.75E-05 
Number of Participants*Number of Primary Studies*Fixed Level*Moving Average 3.75E-05 
Number of Participants*Fixed Level*Autocorrelation*Type of Model 3.48E-05 
Series Length*Error Variance*Moving Average 3.24E-05 
Series Length*Number of Participants*Fixed Level 3.05E-05 
Fixed Level*Error Variance*Autocorrelation*Type of Model 2.89E-05 
Number of Participants*Number of Primary Studies*Moving Average 2.78E-05 
Number of Primary Studies*Fixed Level*Autocorrelation 2.76E-05 
Error Variance*Moving Average*Type of Model 2.67E-05 
Series Length*Number of Primary Studies*Fixed Level 2.59E-05 
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Table A20(Continued) 

 η
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Series Length*Moving Average*Type of Model 2.42E-05 
Series Length*Number of Primary Studies*Moving Average 2.38E-05 
Moving Average 2.36E-05 
Number of Participants*Fixed Level*Autocorrelation 2.34E-05 
Number of Participants*Error Variance*Moving Average 2.28E-05 
Fixed Level*Autocorrelation 2.17E-05 
Number of Primary Studies*Error Variance*Moving Average 2.17E-05 
Series Length*Number of Participants*Error Variance*Moving Average 2.14E-05 
Number of Participants*Moving Average*Type of Model 1.99E-05 
Fixed Level*Autocorrelation*Type of Model 1.9E-05 
Series Length*Fixed Level*Moving Average 1.86E-05 
Series Length*Error Variance*Moving Average*Type of Model 1.82E-05 
Series Length*Number of Participants*Moving Average*Type of Model 1.73E-05 
Number of Primary Studies*Moving Average 1.67E-05 
Number of Primary Studies*Fixed Level*Type of Model 1.5E-05 
Number of Participants*Number of Primary Studies*Moving Average*Type of Model 1.45E-05 
Fixed Level*Error Variance*Moving Average 1.43E-05 
Number of Primary Studies*Error Variance*Moving Average*Type of Model 1.39E-05 
Series Length*Fixed Level*Autocorrelation 1.39E-05 
Series Length*Number of Primary Studies*Fixed Level*Type of Model 1.36E-05 
Series Length*Number of Primary Studies*Moving Average*Type of Model 1.35E-05 
Series Length*Moving Average 1.25E-05 
Series Length*Number of Participants*Fixed Level*Error Variance 1.22E-05 
Number of Participants*Fixed Level*Error Variance*Type of Model 1.19E-05 
Number of Participants*Fixed Level*Error Variance 1.17E-05 
Fixed Level*Moving Average 1.16E-05 
Fixed Level*Error Variance 1.14E-05 
Fixed Level*Error Variance*Autocorrelation 1.09E-05 
Number of Participants*Fixed Level*Error Variance*Moving Average 1.08E-05 
Number of Primary Studies*Moving Average*Type of Model 1.08E-05 
Series Length*Number of Participants*Fixed Level*Type of Model 1.06E-05 
Number of Participants*Fixed Level*Error Variance*Autocorrelation 1.05E-05 
Number of Participants*Error Variance*Moving Average*Type of Model 9.75E-06 
Series Length*Fixed Level 9.74E-06 
Series Length*Fixed Level*Moving Average*Type of Model 9E-06 
Error Variance*Moving Average 8.83E-06 
Series Length*Fixed Level*Autocorrelation*Type of Model 8.24E-06 
Number of Participants*Number of Primary Studies*Fixed Level 7.59E-06 
Number of Participants*Fixed Level*Type of Model 7.57E-06 
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Table A20 (Continued) 
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Series Length*Fixed Level*Type of Model 7.47E-06 
Number of Primary Studies*Fixed Level*Error Variance*Autocorrelation 7.4E-06 
Fixed Level*Error Variance*Type of Model 7.23E-06 
Fixed Level*Moving Average*Type of Model 7.19E-06 
Fixed Level*Type of Model 6.63E-06 
Number of Primary Studies*Fixed Level*Error Variance 6.33E-06 
Number of Primary Studies*Fixed Level*Error Variance*Moving Average 5.74E-06 
Series Length*Number of Primary Studies*Fixed Level*Error Variance 5.46E-06 
Series Length*Fixed Level*Error Variance*Type of Model 5.01E-06 
Number of Primary Studies*Fixed Level*Moving Average*Type of Model 3.96E-06 
Fixed Level*Error Variance*Moving Average*Type of Model 3.82E-06 
Number of Primary Studies*Fixed Level*Error Variance*Type of Model 3.6E-06 
Number of Participants*Number of Primary Studies*Fixed Level*Type of Model 3.03E-06 
Number of Participants*Fixed Level*Moving Average*Type of Model 2.48E-06 
Fixed Level 1.7E-06 
Number of Participants*Fixed Level*Moving Average 1.43E-06 
Series Length*Number of Participants*Fixed Level*Moving Average 1.42E-06 
Series Length*Fixed Level*Error Variance 1.16E-06 
Number of Participants*Fixed Level 1.14E-06 
Series Length*Number of Participants*Number of Primary Studies*Moving Average 7.57E-07 
Series Length*Number of Participants*Number of Primary Studies*Fixed Level 4.96E-07 
Number of Primary Studies*Fixed Level*Moving Average 2.88E-07 
Series Length*Number of Primary Studies*Fixed Level*Moving Average 2.57E-07 
Autocorrelation*Moving Average 0 
Series Length*Autocorrelation*Moving Average 0 
Number of Participants*Autocorrelation*Moving Average 0 
Series Length*Number of Participants*Autocorrelation*Moving Average 0 
Number of Primary Studies*Autocorrelation*Moving Average 0 
Series Length*Number of Primary Studies*Autocorrelation*Moving Average 0 
Number of Participants*Number of Primary Studies*Autocorrelation*Moving Average 0 
Error Variance*Autocorrelation*Moving Average 0 
Series Length*Error Variance*Autocorrelation*Moving Average 0 
Number of Participants*Error Variance*Autocorrelation*Moving Average 0 
Number of Primary Studies*Error Variance*Autocorrelation*Moving Average 0 
Fixed Level*Autocorrelation*Moving Average 0 
Series Length*Fixed Level*Autocorrelation*Moving Average 0 
Number of Participants*Fixed Level*Autocorrelation*Moving Average 0 
Number of Primary Studies*Fixed Level*Autocorrelation*Moving Average 0 
Fixed Level*Error Variance*Autocorrelation*Moving Average 0 
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Table A20 (Continued) 

 η
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Autocorrelation*Moving Average*Type of Model 0 
Series Length*Autocorrelation*Moving Average*Type of Model 0 
Number of Participants*Autocorrelation*Moving Average*Type of Model 0 
Number of Primary Studies*Autocorrelation*Moving Average*Type of Model 0 
Error Variance*Autocorrelation*Moving Average*Type of Model 0 
Fixed Level*Autocorrelation*Moving Average*Type of Model 0 

Total Explained 0.9972 
 

Table A21 
Eta-Squared Values (η2 ) for the Association of the Design Factors with the RMSE Values for the 
Autocorrelation Parameter 

 η
2 

Type of Model 0.33264 
Autocorrelation*Type of Model 0.24376 
Autocorrelation 0.23321 
Series Length 0.05116 
Number of Primary Studies 0.04356 
Series Length*Autocorrelation 0.01881 
Number of Participants 0.01558 
Number of Primary Studies*Autocorrelation 0.00809 
Error Variance 0.0078 
Number of Primary Studies*Type of Model 0.00714 
Series Length*Type of Model 0.00521 
Number of Participants*Autocorrelation 0.00416 
Error Variance*Type of Model 0.00405 
Number of Participants*Type of Model 0.00224 
Series Length*Number of Primary Studies 0.00196 
Series Length*Error Variance 0.00112 
Series Length*Number of Participants 0.0007 
Number of Participants*Number of Primary Studies 0.00047 
Error Variance*Autocorrelation 0.00023 
Number of Primary Studies*Error Variance 0.00018 
Number of Participants*Error Variance 0.00007 
Number of Primary Studies*Fixed Level 0.00001 
Error Variance*Moving Average 0.00001 
Fixed Level*Error Variance 0.00001 
Series Length*Moving Average 0.00001 
Fixed Level*Moving Average 0.00001 
Moving Average 0.00001 
Number of Participants*Fixed Level 0.00001 
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Table A21 (Continued) 

 η
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Number of Primary Studies*Moving Average 0 
Fixed Level*Autocorrelation 0 
Moving Average*Type of Model 0 
Number of Participants*Moving Average 0 
Series Length*Fixed Level 0 
Fixed Level*Type of Model 0 
Fixed Level 0 
Autocorrelation*Moving Average 0 
Total Explained 0.9822 
 

Table A22 
Eta-Squared Values (η2) for the Association of the Design Factors with the Bias Estimates for the Moving 
Average Parameter 

 η
2 

Moving Average*Type of Model 0.45407 
Autocorrelation 0.26246 
Moving Average 0.0984 
Autocorrelation*Type of Model 0.04353 
Error Variance 0.02624 
Type of Model 0.02417 
Error Variance*Autocorrelation 0.02088 
Error Variance*Type of Model 0.00983 
Number of Primary Studies 0.00841 
Series Length*Autocorrelation 0.00603 
Series Length 0.00587 
Number of Participants 0.00286 
Number of Primary Studies*Type of Model 0.00264 
Number of Primary Studies*Moving Average 0.00159 
Series Length*Moving Average 0.00146 
Number of Primary Studies*Error Variance 0.00123 
Number of Participants*Type of Model 0.00099 
Series Length*Type of Model 0.00063 
Series Length*Error Variance 0.00059 
Series Length*Number of Primary Studies 0.00057 
Number of Participants*Error Variance 0.00054 
Number of Primary Studies*Autocorrelation 0.00052 
Number of Participants*Autocorrelation 0.00029 
Number of Participants*Moving Average 0.00028 
Error Variance*Moving Average 0.00024 
Series Length*Number of Participants 0.00017 
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Table A22 (Continued) 

 η
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Number of Participants*Number of Primary Studies 0.00005 
Fixed Level*Moving Average 0 
Fixed Level*Autocorrelation 0 
Number of Participants*Fixed Level 0 
Fixed Level*Type of Model 0 
Series Length*Fixed Level 0 
Number of Primary Studies*Fixed Level 0 
Fixed Level 0 
Fixed Level*Error Variance 0 
Autocorrelation*Moving Average 0 

Total Explained 0.9745 
 

Table A23 
Eta-Squared Values (η2) for the Association of the Design Factors with the CI coverage for the Level-
three for the Phase Effect 

 η
2 

Error Variance 0.3074 
Number of Participants 0.2965 
Number of Participants*Error Variance 0.09014 
Number of Primary Studies 0.07271 
Number of Primary Studies*Error Variance 0.03461 
Series Length 0.03445 
Number of Participants*Number of Primary Studies 0.03085 
Series Length*Error Variance 0.02772 
Autocorrelation 0.01033 
Error Variance*Autocorrelation 0.00953 
Type of Model 0.00715 
Series Length*Number of Primary Studies 0.00713 
Autocorrelation*Type of Model 0.00438 
Error Variance*Type of Model 0.00372 
Series Length*Number of Participants 0.00281 
Number of Primary Studies*Moving Average 0.00246 
Number of Primary Studies*Autocorrelation 0.00223 
Number of Participants*Moving Average 0.00211 
Number of Participants*Autocorrelation 0.00137 
Fixed Level 0.00113 
Series Length*Autocorrelation 0.00105 
Moving Average 0.00086 
Number of Participants*Type of Model 0.00072 
Fixed Level*Error Variance 0.00063 
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Table A23 (Continued) 

 η
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Series Length*Moving Average 0.00036 
Fixed Level*Moving Average 0.00032 
Number of Primary Studies*Type of Model 0.00029 
Series Length*Type of Model 0.00026 
Fixed Level*Autocorrelation 0.00024 
Error Variance*Moving Average 0.0001 
Number of Primary Studies*Fixed Level 0.00006 
Number of Participants*Fixed Level 0.00004 
Moving Average*Type of Model 0.00003 
Series Length*Fixed Level 0.00001 
Fixed Level*Type of Model 0 
Autocorrelation*Moving Average 0 

Total Explained 0.9537 
 

Table A24 
Eta-Squared Values (η2) for the Association of the Design Factors with the CI coverage for the Level-
three for the Interaction Effect 

 η
2 

Series Length 0.29368 
Error Variance 0.14714 
Number of Participants 0.14337 
Series Length*Error Variance 0.11049 
Series Length*Number of Participants 0.05523 
Number of Primary Studies 0.03384 
Number of Participants*Error Variance 0.03036 
Series Length*Number of Primary Studies 0.02904 
Autocorrelation 0.01867 
Number of Participants*Number of Primary Studies 0.01787 
Number of Primary Studies*Error Variance 0.01609 
Type of Model 0.01449 
Series Length*Autocorrelation 0.00932 
Series Length*Type of Model 0.0075 
Autocorrelation*Type of Model 0.00691 
Error Variance*Type of Model 0.00606 
Error Variance*Autocorrelation 0.00392 
Number of Participants*Autocorrelation 0.00167 
Number of Primary Studies*Autocorrelation 0.00148 
Number of Primary Studies*Type of Model 0.00095 
Fixed Level*Moving Average 0.00065 
Fixed Level*Autocorrelation 0.00061 
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Table A24 (Continued) 

 η
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Number of Participants*Type of Model 0.00049 
Series Length*Moving Average 0.00028 
Number of Primary Studies*Fixed Level 0.00021 
Series Length*Fixed Level 0.0002 
Error Variance*Moving Average 0.00009 
Number of Participants*Moving Average 0.00008 
Number of Primary Studies*Moving Average 0.00006 
Moving Average 0.00005 
Number of Participants*Fixed Level 0.00005 
Fixed Level 0.00004 
Fixed Level*Error Variance 0.00002 
Fixed Level*Type of Model 0.00001 
Moving Average*Type of Model 0 
Autocorrelation*Moving Average 0 

Total Explained 0.9509 
 

Table A25 
Eta-Squared Values (η2) for the Association of the Design Factors with the CI coverage for the Level-two 
for the Phase Effect 

 η
2 

Type of Model 0.42088 
Autocorrelation*Type of Model 0.22263 
Error Variance*Type of Model 0.08454 
Error Variance 0.05333 
Autocorrelation 0.04453 
Number of Primary Studies*Type of Model 0.03959 
Error Variance*Autocorrelation*Type of Model 0.03639 
Number of Participants*Type of Model 0.02367 
Number of Primary Studies*Autocorrelation*Type of Model 0.01806 
Number of Participants*Autocorrelation*Type of Model 0.01042 
Error Variance*Autocorrelation 0.00864 
Series Length*Type of Model 0.00707 
Number of Primary Studies*Error Variance*Type of Model 0.00493 
Series Length*Autocorrelation*Type of Model 0.00437 
Number of Participants*Error Variance*Type of Model 0.0025 
Number of Primary Studies*Autocorrelation 0.00236 
Number of Primary Studies 0.0016 
Number of Participants*Autocorrelation 0.00138 
Series Length*Error Variance*Type of Model 0.00126 
Number of Participants*Number of Primary Studies*Type of Model 0.00114 
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Table A25 (Continued) 
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Number of Participants 0.00098 
Series Length*Autocorrelation 0.00095 
Number of Participants*Number of Primary Studies 0.00081 
Series Length*Number of Primary Studies 0.00058 
Series Length*Number of Participants 0.00029 
Number of Primary Studies*Error Variance 0.00023 
Number of Participants*Error Variance 0.00022 
Series Length*Error Variance 0.0002 
Series Length*Error Variance*Autocorrelation 0.00013 
Series Length*Number of Primary Studies*Type of Model 0.00013 
Number of Primary Studies*Error Variance*Autocorrelation 0.00011 
Number of Participants*Number of Primary Studies*Autocorrelation 0.0001 
Series Length*Number of Participants*Type of Model 0.00008 
Number of Participants*Number of Primary Studies*Error Variance 0.00007 
Number of Participants*Error Variance*Autocorrelation 0.00006 
Series Length*Number of Participants*Error Variance 0.00004 
Series Length*Number of Participants*Number of Primary Studies 0.00004 
Series Length*Number of Participants*Autocorrelation 0.00002 
Fixed Level*Moving Average 0.00002 
Series Length*Number of Primary Studies*Autocorrelation 0.00002 
Series Length*Number of Participants*Moving Average 0.00001 
Series Length*Fixed Level*Autocorrelation 0.00001 
Number of Primary Studies*Fixed Level*Moving Average 0.00001 
Series Length 0.00001 
Number of Primary Studies*Fixed Level*Autocorrelation 0.00001 
Fixed Level*Error Variance*Autocorrelation 0.00001 
Error Variance*Moving Average 0.00001 
Number of Primary Studies*Error Variance*Moving Average 0.00001 
Fixed Level*Error Variance*Moving Average 0.00001 
Fixed Level 0.00001 
Number of Participants*Fixed Level*Error Variance 0.00001 
Series Length*Error Variance*Moving Average 6.28E-06 
Number of Participants*Fixed Level 6.23E-06 
Series Length*Moving Average 5.39E-06 
Number of Primary Studies*Moving Average 5.25E-06 
Fixed Level*Autocorrelation 5.23E-06 
Series Length*Number of Primary Studies*Error Variance 4.32E-06 
Moving Average*Type of Model 4.04E-06 
Number of Participants*Number of Primary Studies*Fixed Level 3.99E-06 
Number of Primary Studies*Moving Average*Type of Model 3.79E-06 
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Table A25(Continued) 

 η
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Moving Average 3.19E-06 
Number of Primary Studies*Fixed Level 2.72E-06 
Number of Participants*Number of Primary Studies*Moving Average 2.69E-06 
Number of Participants*Fixed Level*Moving Average 2.18E-06 
Number of Participants*Moving Average*Type of Model 2.06E-06 
Error Variance*Moving Average*Type of Model 1.93E-06 
Series Length*Fixed Level*Error Variance 1.69E-06 
Series Length*Fixed Level*Moving Average 1.5E-06 
Series Length*Number of Primary Studies*Fixed Level 1.22E-06 
Number of Participants*Fixed Level*Autocorrelation 1.13E-06 
Series Length*Moving Average*Type of Model 7E-07 
Number of Participants*Error Variance*Moving Average 5.8E-07 
Number of Participants*Fixed Level*Type of Model 4.6E-07 
Number of Participants*Moving Average 4.3E-07 
Fixed Level*Autocorrelation*Type of Model 3.99E-07 
Fixed Level*Moving Average*Type of Model 3.8E-07 
Series Length*Number of Primary Studies*Moving Average 3.03E-07 
Number of Primary Studies*Fixed Level*Error Variance 2.58E-07 
Series Length*Number of Participants*Fixed Level 2.38E-07 
Series Length*Fixed Level*Type of Model 2.34E-07 
Series Length*Fixed Level 2.18E-07 
Number of Primary Studies*Fixed Level*Type of Model 1.95E-07 
Fixed Level*Error Variance*Type of Model 1.94E-07 
Fixed Level*Error Variance 5.3E-08 
Fixed Level*Type of Model 5.1E-08 
Autocorrelation*Moving Average 0 
Series Length*Autocorrelation*Moving Average 0 
Number of Participants*Autocorrelation*Moving Average 0 
Number of Primary Studies*Autocorrelation*Moving Average 0 
Error Variance*Autocorrelation*Moving Average 0 
Fixed Level*Autocorrelation*Moving Average 0 
Autocorrelation*Moving Average*Type of Model 0 

Total Explained 0.9945 
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Table A26 
Eta-Squared Values (η2) for the Association of the Design Factors with the CI coverage for the Level-two 
for the Interaction Effect 

 η
2 

Type of Model 0.38353 
Autocorrelation*Type of Model 0.2222 
Autocorrelation 0.0535 
Series Length 0.05237 
Number of Primary Studies*Type of Model 0.04095 
Series Length*Type of Model 0.04015 
Error Variance*Type of Model 0.03303 
Error Variance 0.03015 
Number of Participants*Type of Model 0.02338 
Number of Primary Studies*Autocorrelation*Type of Model 0.02174 
Error Variance*Autocorrelation*Type of Model 0.01654 
Series Length*Autocorrelation*Type of Model 0.01482 
Number of Participants*Autocorrelation*Type of Model 0.01208 
Series Length*Autocorrelation 0.00728 
Error Variance*Autocorrelation 0.00575 
Series Length*Error Variance 0.00574 
Series Length*Number of Primary Studies*Type of Model 0.00358 
Number of Primary Studies*Error Variance*Type of Model 0.00251 
Series Length*Error Variance*Type of Model 0.00241 
Number of Primary Studies*Autocorrelation 0.0022 
Series Length*Number of Participants*Type of Model 0.00201 
Number of Participants*Number of Primary Studies*Type of Model 0.00141 
Series Length*Number of Primary Studies 0.0014 
Number of Participants*Autocorrelation 0.00135 
Number of Participants*Error Variance*Type of Model 0.00134 
Series Length*Number of Participants 0.00109 
Number of Primary Studies 0.00089 
Number of Participants*Number of Primary Studies 0.00086 
Series Length*Number of Primary Studies*Error Variance 0.00076 
Series Length*Number of Participants*Error Variance 0.00068 
Number of Participants 0.00046 
Series Length*Error Variance*Autocorrelation 0.00038 
Number of Primary Studies*Error Variance 0.00023 
Number of Participants*Error Variance 0.00019 
Number of Participants*Number of Primary Studies*Error Variance 0.00011 
Series Length*Number of Participants*Number of Primary Studies 0.00009 
Series Length*Number of Primary Studies*Autocorrelation 0.00006 
Number of Participants*Number of Primary Studies*Autocorrelation 0.00006 
Fixed Level*Error Variance 0.00005 
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Table A26 (Continued) 

 η
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Series Length*Number of Participants*Autocorrelation 0.00005 
Number of Primary Studies*Error Variance*Autocorrelation 0.00003 
Error Variance*Moving Average 0.00003 
Number of Participants*Number of Primary Studies*Moving Average 0.00003 
Number of Participants*Error Variance*Autocorrelation 0.00002 
Number of Participants*Number of Primary Studies*Fixed Level 0.00002 
Series Length*Fixed Level*Autocorrelation 0.00001 
Series Length*Error Variance*Moving Average 0.00001 
Number of Primary Studies*Fixed Level*Autocorrelation 0.00001 
Number of Participants*Fixed Level*Moving Average 0.00001 
Number of Primary Studies*Error Variance*Moving Average 0.00001 
Series Length*Number of Participants*Moving Average 0.00001 
Number of Participants*Error Variance*Moving Average 8.08E-06 
Fixed Level*Moving Average*Type of Model 7.82E-06 
Fixed Level*Error Variance*Moving Average 7.72E-06 
Number of Participants*Fixed Level*Error Variance 6.75E-06 
Fixed Level*Moving Average 6.38E-06 
Fixed Level 6.28E-06 
Fixed Level*Error Variance*Autocorrelation 5.68E-06 
Fixed Level*Autocorrelation 5.61E-06 
Number of Participants*Fixed Level*Autocorrelation 5.37E-06 
Series Length*Number of Primary Studies*Moving Average 5.15E-06 
Number of Primary Studies*Fixed Level*Moving Average 4.6E-06 
Number of Participants*Moving Average*Type of Model 4.38E-06 
Moving Average 4.31E-06 
Series Length*Fixed Level*Error Variance 4.19E-06 
Series Length*Number of Primary Studies*Fixed Level 3.4E-06 
Series Length*Fixed Level*Type of Model 3.01E-06 
Fixed Level*Autocorrelation*Type of Model 2.98E-06 
Series Length*Moving Average 2.94E-06 
Number of Participants*Moving Average 2.83E-06 
Series Length*Moving Average*Type of Model 2.73E-06 
Number of Primary Studies*Moving Average 2.31E-06 
Number of Primary Studies*Fixed Level*Type of Model 2.11E-06 
Error Variance*Moving Average*Type of Model 1.2E-06 
Number of Primary Studies*Fixed Level 1.15E-06 
Moving Average*Type of Model 8.32E-07 
Series Length*Number of Participants*Fixed Level 4.9E-07 
Fixed Level*Type of Model 4.78E-07 
Number of Primary Studies*Moving Average*Type of Model 4.73E-07 
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Table A26 (Continued) 
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Number of Primary Studies*Fixed Level*Error Variance 4.29E-07 
Fixed Level*Error Variance*Type of Model 3.97E-07 
Series Length*Fixed Level*Moving Average 3.51E-07 
Number of Participants*Fixed Level*Type of Model 2.18E-07 
Number of Participants*Fixed Level 2E-08 
Series Length*Fixed Level 1.3E-08 
Autocorrelation*Moving Average 0 
Series Length*Autocorrelation*Moving Average 0 
Number of Participants*Autocorrelation*Moving Average 0 
Number of Primary Studies*Autocorrelation*Moving Average 0 
Error Variance*Autocorrelation*Moving Average 0 
Fixed Level*Autocorrelation*Moving Average 0 
Autocorrelation*Moving Average*Type of Model 0 

Total Explained 0.9877 
 

Table A27 
Eta-Squared Values (η2) for the Association of the Design Factors with the CI coverage for the Level-one 
Variance 

 η
2 

Autocorrelation 0.53353 
Series Length*Type of Model 0.07255 
Number of Primary Studies 0.06228 
Series Length*Autocorrelation 0.05339 
Series Length 0.04854 
Series Length*Autocorrelation*Type of Model 0.04281 
Number of Primary Studies*Autocorrelation 0.04087 
Autocorrelation*Type of Model 0.02892 
Number of Participants 0.02502 
Type of Model 0.0211 
Number of Participants*Autocorrelation 0.01566 
Number of Primary Studies*Autocorrelation*Type of Model 0.00709 
Number of Primary Studies*Type of Model 0.00423 
Error Variance*Autocorrelation 0.00419 
Error Variance*Autocorrelation*Type of Model 0.00275 
Series Length*Number of Primary Studies 0.00272 
Number of Participants*Autocorrelation*Type of Model 0.00239 
Error Variance*Type of Model 0.00236 
Series Length*Number of Participants*Number of Primary Studies 0.00192 
Number of Participants*Number of Primary Studies*Autocorrelation 0.0018 
Series Length*Error Variance*Autocorrelation 0.00141 
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Table A27(Continued) 
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Series Length*Number of Primary Studies*Type of Model 0.0014 
Number of Participants*Type of Model 0.00127 
Series Length*Number of Primary Studies*Autocorrelation 0.00114 
Series Length*Number of Participants 0.00075 
Series Length*Number of Primary Studies*Error Variance 0.00072 
Series Length*Number of Participants*Autocorrelation 0.00071 
Series Length*Error Variance 0.00063 
Error Variance 0.00043 
Series Length*Number of Participants*Type of Model 0.00036 
Number of Participants*Number of Primary Studies 0.00035 
Number of Primary Studies*Error Variance 0.00033 
Number of Primary Studies*Error Variance*Type of Model 0.00022 
Series Length*Number of Participants*Error Variance 0.00019 
Series Length*Error Variance*Type of Model 0.00018 
Number of Participants*Error Variance*Type of Model 0.00014 
Number of Participants*Error Variance 0.00013 
Number of Participants*Number of Primary Studies*Type of Model 0.00003 
Number of Participants*Fixed Level 0.00002 
Number of Primary Studies*Error Variance*Autocorrelation 0.00001 
Number of Participants*Error Variance*Autocorrelation 0.00001 
Fixed Level*Error Variance*Moving Average 0.00001 
Number of Participants*Number of Primary Studies*Error Variance 0.00001 
Number of Participants*Fixed Level*Type of Model 0 
Series Length*Number of Participants*Fixed Level 0 
Series Length*Fixed Level*Autocorrelation 0 
Series Length*Error Variance*Moving Average 0 
Number of Participants*Error Variance*Moving Average 0 
Fixed Level*Autocorrelation*Type of Model 0 
Fixed Level*Autocorrelation 0 
Error Variance*Moving Average*Type of Model 0 
Number of Primary Studies*Error Variance*Moving Average 2.23E-06 
Number of Participants*Fixed Level*Autocorrelation 2.12E-06 
Number of Participants*Moving Average 1.8E-06 
Series Length*Moving Average*Type of Model 1.63E-06 
Series Length*Fixed Level*Moving Average 1.45E-06 
Number of Primary Studies*Moving Average 1.4E-06 
Series Length*Number of Primary Studies*Fixed Level 1.38E-06 
Number of Primary Studies*Fixed Level*Moving Average 1.29E-06 
Series Length*Moving Average 1.12E-06 
Error Variance*Moving Average 9.63E-07 
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Table A27(Continued) 
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Fixed Level*Moving Average 7.96E-07 
Series Length*Fixed Level*Error Variance 7.65E-07 
Moving Average*Type of Model 7.45E-07 
Number of Primary Studies*Moving Average*Type of Model 7.22E-07 
Number of Participants*Moving Average*Type of Model 6.29E-07 
Fixed Level 6.12E-07 
Fixed Level*Moving Average*Type of Model 5.7E-07 
Number of Primary Studies*Fixed Level*Error Variance 4.68E-07 
Number of Primary Studies*Fixed Level*Type of Model 4.04E-07 
Series Length*Fixed Level 4E-07 
Series Length*Number of Primary Studies*Moving Average 3.87E-07 
Fixed Level*Type of Model 3.86E-07 
Fixed Level*Error Variance*Autocorrelation 2.82E-07 
Number of Participants*Number of Primary Studies*Fixed Level 2.25E-07 
Number of Participants*Number of Primary Studies*Moving Average 1.93E-07 
Moving Average 1.9E-07 
Series Length*Number of Participants*Moving Average 1.62E-07 
Series Length*Fixed Level*Type of Model 1.61E-07 
Number of Participants*Fixed Level*Moving Average 1.16E-07 
Number of Participants*Fixed Level*Error Variance 1.08E-07 
Fixed Level*Error Variance 1.01E-07 
Fixed Level*Error Variance*Type of Model 5.5E-08 
Number of Primary Studies*Fixed Level 5.2E-08 
Number of Primary Studies*Fixed Level*Autocorrelation 1E-09 
Autocorrelation*Moving Average 0 
Series Length*Autocorrelation*Moving Average 0 
Number of Participants*Autocorrelation*Moving Average 0 
Number of Primary Studies*Autocorrelation*Moving Average 0 
Error Variance*Autocorrelation*Moving Average 0 
Fixed Level*Autocorrelation*Moving Average 0 
Autocorrelation*Moving Average*Type of Model 0 

Total Explained 0.9846 
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Table A28 
Eta-Squared Values (η2) for the Association of the Design Factors with the CI coverage for the 
Autocorrelation Parameter 

 η
2 

Autocorrelation*Type of Model 0.32371 
Type of Model 0.16802 
Autocorrelation 0.05901 
Series Length*Autocorrelation 0.0576 
Number of Primary Studies 0.05538 
Series Length 0.04776 
Series Length*Autocorrelation*Type of Model 0.03759 
Number of Primary Studies*Autocorrelation 0.02618 
Number of Participants 0.02514 
Series Length*Number of Primary Studies 0.02123 
Series Length*Type of Model 0.01438 
Number of Participants*Autocorrelation 0.01396 
Error Variance*Autocorrelation*Type of Model 0.01157 
Series Length*Number of Participants 0.01117 
Series Length*Number of Primary Studies*Autocorrelation 0.0111 
Error Variance*Type of Model 0.01099 
Number of Primary Studies*Type of Model 0.01022 
Number of Participants*Number of Primary Studies 0.00758 
Number of Primary Studies*Autocorrelation*Type of Model 0.00736 
Error Variance 0.00692 
Number of Participants*Number of Primary Studies*Autocorrelation 0.00587 
Series Length*Number of Primary Studies*Type of Model 0.00497 
Series Length*Number of Participants*Autocorrelation 0.00456 
Number of Participants*Type of Model 0.00415 
Series Length*Number of Participants*Number of Primary Studies 0.0041 
Number of Participants*Autocorrelation*Type of Model 0.00362 
Series Length*Number of Participants*Type of Model 0.00254 
Series Length*Error Variance 0.0021 
Number of Participants*Number of Primary Studies*Type of Model 0.002 
Number of Primary Studies*Error Variance 0.00127 
Error Variance*Autocorrelation 0.00124 
Series Length*Error Variance*Autocorrelation 0.00108 
Series Length*Number of Primary Studies*Error Variance 0.0007 
Number of Primary Studies*Error Variance*Type of Model 0.00065 
Number of Primary Studies*Error Variance*Autocorrelation 0.00063 
Series Length*Error Variance*Type of Model 0.00051 
Number of Participants*Error Variance 0.00037 
Number of Participants*Error Variance*Type of Model 0.00034 
Series Length*Number of Participants*Error Variance 0.00031 
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Table A28 (Continued) 
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Number of Primary Studies*Moving Average 0.0001 
Number of Primary Studies*Error Variance*Moving Average 0.0001 
Number of Participants*Error Variance*Autocorrelation 0.00008 
Number of Participants*Number of Primary Studies*Error Variance 0.00007 
Fixed Level*Autocorrelation 0.00004 
Fixed Level*Moving Average 0.00004 
Error Variance*Moving Average 0.00003 
Number of Participants*Moving Average 0.00003 
Series Length*Error Variance*Moving Average 0.00003 
Number of Participants*Number of Primary Studies*Fixed Level 0.00003 
Number of Primary Studies*Fixed Level*Autocorrelation 0.00002 
Number of Participants*Error Variance*Moving Average 0.00002 
Series Length*Fixed Level*Moving Average 2.23E-05 
Series Length*Number of Participants*Fixed Level 2.07E-05 
Number of Participants*Fixed Level*Autocorrelation 1.75E-05 
Series Length*Fixed Level*Autocorrelation 1.71E-05 
Fixed Level*Error Variance*Type of Model 1.66E-05 
Number of Participants*Fixed Level 1.49E-05 
Series Length*Number of Primary Studies*Moving Average 1.45E-05 
Number of Participants*Fixed Level*Moving Average 1.36E-05 
Moving Average 1.26E-05 
Fixed Level 1.21E-05 
Error Variance*Moving Average*Type of Model 1.13E-05 
Series Length*Fixed Level 1.12E-05 
Number of Primary Studies*Fixed Level*Moving Average 1.08E-05 
Moving Average*Type of Model 9.48E-06 
Series Length*Moving Average*Type of Model 9.27E-06 
Fixed Level*Type of Model 8.95E-06 
Fixed Level*Autocorrelation*Type of Model 7.64E-06 
Number of Participants*Number of Primary Studies*Moving Average 7.61E-06 
Number of Participants*Moving Average*Type of Model 7.37E-06 
Series Length*Fixed Level*Error Variance 7.04E-06 
Number of Primary Studies*Moving Average*Type of Model 5.33E-06 
Series Length*Moving Average 5.29E-06 
Number of Participants*Fixed Level*Type of Model 3.44E-06 
Fixed Level*Moving Average*Type of Model 3.04E-06 
Number of Primary Studies*Fixed Level*Error Variance 2.19E-06 
Fixed Level*Error Variance*Autocorrelation 1.95E-06 
Number of Primary Studies*Fixed Level*Type of Model 1.86E-06 
Series Length*Fixed Level*Type of Model 1.85E-06 
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Table A28 (Continued) 

 η
2 

Series Length*Number of Participants*Moving Average 1.83E-06 
Series Length*Number of Primary Studies*Fixed Level 1.16E-06 
Fixed Level*Error Variance*Moving Average 5.95E-07 
Number of Participants*Fixed Level*Error Variance 2.9E-07 
Fixed Level*Error Variance 1.26E-07 
Number of Primary Studies*Fixed Level 7.1E-08 
Autocorrelation*Moving Average 0 
Series Length*Autocorrelation*Moving Average 0 
Number of Participants*Autocorrelation*Moving Average 0 
Number of Primary Studies*Autocorrelation*Moving Average 0 
Error Variance*Autocorrelation*Moving Average 0 
Fixed Level*Autocorrelation*Moving Average 0 
Autocorrelation*Moving Average*Type of Model 0 
Total Explained 0.9688 
 

Table A29 
Eta-Squared Values (η2)for the Association of the Design Factors with the CI coverage for the Moving 
Average Parameter 

 η
2 

Moving Average*Type of Model 0.53854 
Moving Average 0.2604 
Autocorrelation 0.18233 
Autocorrelation*Type of Model 0.005 
Type of Model 0.00144 
Series Length*Type of Model 0.00067 
Series Length*Moving Average 0.00045 
Error Variance*Autocorrelation 0.00043 
Series Length*Autocorrelation 0.00033 
Error Variance*Moving Average 0.0003 
Error Variance*Type of Model 0.00016 
Number of Primary Studies*Moving Average 0.00014 
Error Variance 0.00013 
Number of Primary Studies*Autocorrelation 0.00011 
Number of Participants*Moving Average 0.00008 
Number of Primary Studies*Type of Model 0.00008 
Number of Primary Studies 0.00005 
Number of Participants*Type of Model 0.00004 
Number of Participants 0.00003 
Number of Participants*Autocorrelation 0.00001 
Number of Primary Studies*Error Variance 0.00001 
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Table A29 (Continued) 

 η
2 

Series Length*Error Variance 0.00001 
Number of Participants*Error Variance 0 
Fixed Level*Moving Average 0 
Fixed Level*Autocorrelation 0 
Series Length 0 
Series Length*Number of Participants 0 
Number of Participants*Number of Primary Studies 0 
Series Length*Number of Primary Studies 0 
Fixed Level 0 
Fixed Level*Type of Model 0 
Number of Participants*Fixed Level 0 
Fixed Level*Error Variance 0 
Series Length*Fixed Level 0 
Number of Primary Studies*Fixed Level 0 
Autocorrelation*Moving Average 0 

Total Explained 0.9907 
 

Table A30 
Eta-Squared Values (η2)for the Association of the Design Factors with the CI Width for the Level-one 
Variance 

 η
2 

Type of Model 0.17801 
Series Length 0.15039 
Number of Primary Studies 0.13942 
Autocorrelation*Type of Model 0.08227 
Number of Participants 0.06393 
Autocorrelation 0.06279 
Series Length*Type of Model 0.05071 

Series Length*Autocorrelation*Type of Model 0.02111 
Number of Primary Studies*Type of Model 0.01973 
Series Length*Number of Primary Studies 0.01684 
Series Length*Autocorrelation 0.01413 
Number of Participants*Type of Model 0.01071 
Number of Primary Studies*Autocorrelation*Type of Model 0.01065 
Error Variance 0.00926 
Series Length*Number of Participants 0.0091 
Error Variance*Type of Model 0.00888 
Number of Primary Studies*Autocorrelation 0.0088 
Number of Participants*Number of Primary Studies 0.00785 
Series Length*Number of Primary Studies*Type of Model 0.00724 
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Table A30(Continued) 

 η
2 

Series Length*Error Variance 0.00677 
Series Length*Error Variance*Type of Model 0.00637 
Number of Participants*Autocorrelation*Type of Model 0.00616 
Error Variance*Autocorrelation*Type of Model 0.00533 
Number of Participants*Autocorrelation 0.0052 
Error Variance*Autocorrelation 0.00447 
Series Length*Number of Participants*Type of Model 0.00444 
Series Length*Error Variance*Autocorrelation 0.00341 
Series Length*Number of Primary Studies*Autocorrelation 0.0032 
Number of Primary Studies*Error Variance 0.00263 
Number of Primary Studies*Error Variance*Type of Model 0.00254 
Number of Participants*Number of Primary Studies*Type of Model 0.00227 
Series Length*Number of Participants*Autocorrelation 0.00225 
Series Length*Number of Primary Studies*Error Variance 0.00215 
Series Length*Number of Participants*Number of Primary Studies 0.002 
Number of Primary Studies*Error Variance*Autocorrelation 0.00186 
Number of Participants*Error Variance 0.00176 
Number of Participants*Error Variance*Type of Model 0.0017 
Number of Participants*Number of Primary Studies*Autocorrelation 0.00162 
Series Length*Number of Participants*Error Variance 0.00152 
Number of Participants*Error Variance*Autocorrelation 0.0014 
Number of Participants*Number of Primary Studies*Error Variance 0.00098 
Number of Participants*Error Variance*Moving Average 0.00043 
Series Length*Number of Primary Studies*Moving Average 0.00043 
Number of Primary Studies*Error Variance*Moving Average 0.00042 
Series Length*Moving Average 0.00042 
Series Length*Moving Average*Type of Model 0.00042 
Number of Participants*Number of Primary Studies*Moving Average 0.00042 
Series Length*Number of Participants*Moving Average 0.00041 
Number of Primary Studies*Moving Average 0.00041 
Moving Average 0.00041 
Moving Average*Type of Model 0.00041 
Number of Primary Studies*Moving Average*Type of Model 0.000412 
Number of Participants*Moving Average 0.000409 
Number of Participants*Moving Average*Type of Model 0.000408 
Series Length*Error Variance*Moving Average 0.000408 
Error Variance*Moving Average*Type of Model 0.000403 
Error Variance*Moving Average 0.000402 
Number of Participants*Fixed Level*Moving Average 0.000149 
Fixed Level*Error Variance*Moving Average 0.000142 
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Table A30 (Continued) 

 η
2 

Fixed Level*Moving Average 0.000127 
Number of Primary Studies*Fixed Level*Moving Average 0.000126 
Fixed Level*Moving Average*Type of Model 0.000125 
Series Length*Fixed Level*Moving Average 0.000123 
Fixed Level*Autocorrelation 9.91E-05 
Number of Primary Studies*Fixed Level*Autocorrelation 9.87E-05 
Fixed Level*Autocorrelation*Type of Model 9.78E-05 
Series Length*Fixed Level*Autocorrelation 9.56E-05 
Number of Participants*Fixed Level*Autocorrelation 8.91E-05 
Fixed Level*Error Variance*Autocorrelation 8.55E-05 
Number of Participants*Number of Primary Studies*Fixed Level 6.98E-05 
Series Length*Fixed Level*Error Variance 6.91E-05 
Series Length*Fixed Level 6.85E-05 
Series Length*Number of Primary Studies*Fixed Level 6.85E-05 
Number of Primary Studies*Fixed Level 6.75E-05 
Series Length*Fixed Level*Type of Model 6.72E-05 
Fixed Level 6.7E-05 
Fixed Level*Error Variance 6.67E-05 
Number of Primary Studies*Fixed Level*Type of Model 6.59E-05 
Fixed Level*Type of Model 6.59E-05 
Series Length*Number of Participants*Fixed Level 6.54E-05 
Number of Primary Studies*Fixed Level*Error Variance 6.51E-05 
Fixed Level*Error Variance*Type of Model 6.5E-05 
Number of Participants*Fixed Level*Type of Model 6.45E-05 
Number of Participants*Fixed Level 6.38E-05 
Number of Participants*Fixed Level*Error Variance 5.83E-05 
Autocorrelation*Moving Average 0 
Series Length*Autocorrelation*Moving Average 0 
Number of Participants*Autocorrelation*Moving Average 0 
Number of Primary Studies*Autocorrelation*Moving Average 0 
Error Variance*Autocorrelation*Moving Average 0 
Fixed Level*Autocorrelation*Moving Average 0 
Autocorrelation*Moving Average*Type of Model 0 

Total Explained 0.9509 
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Table A31 
Eta-Squared Values (η2)for the Association of the Design Factors with the CI Width for the 
Autocorrelation Parameter 

 η
2 

Type of Model 0.54456 
Autocorrelation*Type of Model 0.30678 
Series Length 0.04354 
Series Length*Type of Model 0.02829 
Number of Primary Studies 0.02119 
Autocorrelation 0.00992 
Number of Participants 0.00834 
Number of Primary Studies*Type of Model 0.00476 
Number of Primary Studies*Autocorrelation 0.00328 
Error Variance*Autocorrelation 0.00315 
Number of Participants*Type of Model 0.00213 
Number of Participants*Autocorrelation 0.00143 
Error Variance*Type of Model 0.00065 
Series Length*Number of Primary Studies 0.00057 
Series Length*Autocorrelation 0.00044 
Series Length*Error Variance 0.0004 
Series Length*Number of Participants 0.00028 
Number of Participants*Number of Primary Studies 0.00013 
Error Variance 0.00009 
Number of Primary Studies*Error Variance 0.00002 
Number of Participants*Error Variance 0.00001 
Fixed Level*Error Variance 0 
Fixed Level*Type of Model 0 
Fixed Level 0 
Number of Participants*Moving Average 0 
Series Length*Fixed Level 0 
Number of Primary Studies*Moving Average 0 
Fixed Level*Autocorrelation 0 
Fixed Level*Moving Average 0 
Moving Average*Type of Model 0 
Series Length*Moving Average 0 
Moving Average 0 
Number of Participants*Fixed Level 0 
Error Variance*Moving Average 0 
Number of Primary Studies*Fixed Level 0 
Autocorrelation*Moving Average 0 
Total Explained 0.9800 
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Table A32 
Eta-Squared Values (η2)for the Association of the Design Factors with the CI Width for the Moving 
Average Parameter 

 η
2 

Autocorrelation*Type of Model 0.27967 
Type of Model 0.12097 
Autocorrelation 0.06956 
Error Variance*Autocorrelation*Type of Model 0.05626 
Error Variance*Type of Model 0.02664 
Number of Participants*fix*Error Variance*Autocorrelation*Type of Model 0.02572 
Number of Primary Studies*Autocorrelation*Type of Model 0.02324 
Series Length*Autocorrelation*Type of Model 0.02239 
Series Length*Number of Participants*Error Variance*Autocorrelation*Type of 
Model 0.01625 
Error Variance*Autocorrelation 0.01405 
Number of Participants*Fixed Level*Error Variance*Type of Model 0.00919 
Fixed Level*Error Variance*Autocorrelation*Type of Model 0.00916 
Series Length*Number of Primary Studies*Error Variance*Autocorrelation*Model 0.00904 
Table 33A Continued 
Eta-Squared Values (η2)for the Association of the Design Factors with the CI Width for the Moving 
Average Parameter 
Number of Primary Studies*Error Variance*Moving Average*Type of Model 0.00826 
Series Length*Number of Primary Studies*Error Variance*the*Type of Model 0.00816 
Series Length*fix*Error Variance*Autocorrelation*Type of Model 0.00749 
Number of Participants*Moving Average*Type of Model 0.00743 
Series Length*Number of Participants*Moving Average*Type of Model 0.00724 
Series Length*Number of Primary Studies*fix*Autocorrelation*Type of Model 0.00722 
Series Length*Number of Participants*Number of Primary Studies*the*Type of 
Model 0.00703 
Series Length*Error Variance*Moving Average*Type of Model 0.007 
Number of Primary Studies*fix*Error Variance*Autocorrelation*Type of Model 0.00696 
Error Variance*Moving Average*Type of Model 0.0069 
Number of Participants*Number of Primary Studies*Moving Average*Type of Model 0.00684 
Number of Participants*Number of Primary Studies*fix*Autocorrelation*Type of 
Model 0.00684 
Error Variance 0.00671 
Number of Participants*Fixed Level*Error Variance*Autocorrelation 0.00643 
Series Length*Number of Primary Studies*Type of Model 0.00594 
Number of Primary Studies*Autocorrelation 0.00584 
Series Length*Autocorrelation 0.00566 
Number of Primary Studies*Error Variance*Autocorrelation*Type of Model 0.00565 
Number of Participants*Error Variance*Autocorrelation*Type of Model 0.00497 
Series Length*Number of Participants*Type of Model 0.00496 
Series Length*Number of Participants*Autocorrelation*Type of Model 0.00474 
 



www.manaraa.com

299 

 

Table A32 (Continued) 

 η
2 

Series Length*Number of Participants*fix*Autocorrelation*Type of Model 0.00457 
Number of Participants*Number of Primary Studies*Error Variance*Autocorrelation*Type 
of Model 0.00443 
Series Length*Number of Primary Studies*Autocorrelation*Type of Model 0.00412 
Series Length*Number of Participants*Error Variance*Autocorrelation 0.00406 
Number of Participants*Number of Primary Studies*Error Variance*Type of Model 0.00401 
Number of Participants*Type of Model 0.00397 
Series Length*Error Variance*Autocorrelation*Type of Model 0.00298 
Number of Participants*Autocorrelation*Type of Model 0.00293 
Number of Participants*Error Variance*Type of Model 0.00292 
Series Length*Number of Participants*Number of Primary Studies*Error 
Variance*Autocorrelation 0.00285 
Series Length*Number of Primary Studies*Moving Average*Type of Model 0.00274 
Number of Primary Studies*Moving Average*Type of Model 0.00262 
Series Length*Number of Participants*Error Variance*the*Type of Model 0.00248 
Number of Participants*Error Variance*Moving Average*Type of Model 0.00242 
Number of Participants*Fixed Level*Error Variance 0.0023 
Fixed Level*Error Variance*Autocorrelation 0.00229 
Series Length*Number of Primary Studies*Error Variance*Autocorrelation 0.00225 
Number of Participants*Number of Primary Studies*Error Variance*the*Type of Model 0.002249 
Series Length*Number of Participants*Fixed Level*Type of Model 0.002246 
Series Length*Fixed Level*Autocorrelation*Type of Model 0.002228 
Number of Primary Studies*Error Variance*Moving Average 0.002067 
Series Length*Number of Primary Studies*Error Variance*Moving Average 0.00204 
Moving Average*Type of Model 0.002029 
Series Length*Moving Average*Type of Model 0.001928 
Series Length*Fixed Level*Error Variance*Autocorrelation 0.001874 
Number of Participants*Moving Average 0.001857 
Series Length*Number of Participants*Moving Average 0.001809 
Series Length*Number of Primary Studies*Fixed Level*Autocorrelation 0.001806 
Series Length*Number of Participants*Number of Primary Studies*Moving Average 0.001758 
Series Length*Error Variance*Moving Average 0.001748 
Number of Primary Studies*Fixed Level*Error Variance*Autocorrelation 0.001739 
Error Variance*Moving Average 0.001725 
Number of Participants*Number of Primary Studies*Moving Average 0.00171 
Number of Participants*Number of Primary Studies*Fixed Level*Autocorrelation 0.001709 
Series Length*Number of Participants*Number of Primary Studies*Autocorrelation*Type 
of Model 0.001703 
Number of Participants*Number of Primary Studies*fix*Error Variance*Type of Model 0.001695 
Number of Participants*Number of Primary Studies*Autocorrelation*Type of Model 0.001658 
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Table A32 (Continued) 
 
Series Length*Number of Primary Studies*fix*Error Variance*Type of Model 0.001642 
Fixed Level*Error Variance*Type of Model 0.0015 
Series Length*Number of Primary Studies 0.001489 
Number of Primary Studies*Error Variance*Autocorrelation 0.001411 
Series Length*Number of Participants*Number of Primary Studies*Type of Model 0.001393 
Number of Participants*Number of Primary Studies*Type of Model 0.001274 
Series Length*Fixed Level*Error Variance*Type of Model 0.001256 
Number of Participants*Error Variance*Autocorrelation 0.001241 
Series Length*Number of Participants 0.00124 
Series Length*Number of Participants*Number of Primary Studies*fix*Error Variance 0.001231 
Number of Primary Studies*Fixed Level*Autocorrelation*Type of Model 0.001212 
Series Length*Number of Participants*Autocorrelation 0.001182 
Series Length*Number of Participants*Fixed Level*Autocorrelation 0.001143 
Number of Primary Studies*Fixed Level*Type of Model 0.001135 
Number of Participants*Number of Primary Studies*Error Variance*Autocorrelation 0.001108 
Number of Participants*Fixed Level*Autocorrelation*Type of Model 0.00109 
Number of Participants*Number of Primary Studies*Fixed Level*Type of Model 0.001071 
Number of Participants 0.001025 
Series Length*Number of Primary Studies*Autocorrelation 0.001023 
Number of Primary Studies*Fixed Level*Error Variance*Type of Model 0.001018 
Number of Participants*Number of Primary Studies*Error Variance 0.001 
Series Length*Number of Primary Studies*fix*Error Variance*Autocorrelation 0.000906 
Series Length*Number of Participants*Number of Primary Studies*Error Variance*Type 
of Model 0.000844 
Series Length*Error Variance*Type of Model 0.000765 
Series Length*Error Variance*Autocorrelation 0.000749 
Number of Participants*Autocorrelation 0.000729 
Number of Participants*Error Variance 0.000728 
Series Length*Number of Primary Studies*Moving Average 0.000685 
Number of Primary Studies*Moving Average 0.000656 
Series Length*Number of Participants*Error Variance*Moving Average 0.00062 
Number of Participants*Error Variance*Moving Average 0.000606 

Total Explained 0.9449 
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